0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于多传感器数据融合处理实现与城市三维空间和时间配准

电子设计 来源:传感器与微系统 作者:石波 , 卢秀山 , 王 2020-07-14 08:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

引 言

城市三维空间信息的获取是“数字城市”的基本工程,它具有位置性、多维性和时序性等特点,是“数字城市”中融合其他各种信息、形成在空间和时间上连续分布的城市综合信息的基础,这就决定了所获取的城市三维空间信息应具有一定的位置精度、时间精度以及完整的空间坐标描述形式,而过去只依赖于某种特定传感器的三维信息相对于这些要求就具有很大的局限性。因此,当前城市三维空间信息的获取的趋势是由利用单个特定传感器获取单一数据信息,向利用多个传感器获取多方面数据信息发展,将多种类型的传感器进行优化配置信息互补,从而使得系统的精度得到很大提高。这就涉及到如何对多种传感器进行信息获取和信息融合的问题。

多传感器数据融合处理的前提条件是从每个传感器获得的信息必须是在同一个空间的同一时刻的描述。这就包括2个方面:首先,要保证每个传感器得到的信息是在同一坐标系下的描述,称之为空间配准;其次,要保证各传感器之间的数据应该在时间上对齐,称之为时间配准,是上面所提到多传感器融合中空间配准的关键,在车载式三维采集系统的动态工作环境下,时间对准问题表现得尤为突出。

因此,多传感器信息的空间配准和时间配准成为城市三维空间信息融合中首先需要实现的关键技术。本课题系统集成了新近发展的多种传感器,包括3台Novetel GPS DL-4 OEM接收机、Riegl公司的LMS-Q140i-80激光扫描仪等,可以实时完成载体(车)的GPS定位数据、建筑物激光扫描数据等数据信息的采集及精确的空间和时间上的配准,从而实现有效的多传感器信息融合。

1、 多传感器空间配准

对于车载近景三维测量系统,每个传感器得到的信息都是部分城市三维空间信息在该传感器空间(坐标系)中的描述。由于各传感器物理特性和空间位置上的差异,造成这些信息的描述空间(坐标系)各不相同,因此,很难对这样的信息进行融合处理。为了保证城市三维信息融合处理的顺利进行,必须在融合前对这些信息进行适当的处理,将这些传感器的数据信息映射到一个共同的参考描述空间(参考坐标系)中,然后,进行融合处理,最后,得到城市三维信息在该空间(参考坐标系)上的一致描述。这就需要空间配准,也就是得到多传感器局部坐标系和全局参考坐标系间的转换关系,在本课题里选择的全局参考坐标系就是西安80坐标系。从数学的角度来看,不同的传感器的测量值组成一个测量子空间,而信息融合则是各测量子空间按照一定的法则向融合信息空间投影,这里的测量子空间就是在各个传感器的局部坐标系下。

为了进行空间配准,从而实现该课题中激光扫描仪(LMS)数据与GPS数据的有效融合,本文引人了激光扫描仪坐标系统、激光扫描仪直角坐标系统、平台坐标系统和基准参考坐标系统(西安80坐标系)。

1.1 各坐标系统定义

1) 激光扫描仪极坐标系统

Riegl公司的LMS-Q140i-80激光扫描仪的扫描角度范围为±40°,图1给出了该扫描仪的扫描示意图,建立一个激光扫描仪的局部极坐标系统(ρ,θ),极轴为圆柱体轴线方向,极角θ为扫描仪扫描方向与极轴之间的夹角。

基于多传感器数据融合处理实现与城市三维空间和时间配准

2) 激光扫描仪直角坐标系统

激光扫描仪直角坐标系统(XL,YL,ZL)的原点OL与激光扫描仪极坐标系统的原点重合,ZL与极轴平行,方向向上,YL方向为车行方向,XL-OL-ZL平面与极平面重合,3轴构成右手坐标系。

3) 平台坐标系统

引入平台坐标系统的目的是将3个GPS天线位置数据转换为平台的姿态。如图2,平台坐标系统原点OG位于GPS1天线相位中心,XG轴为GPS2和GPS3相位中心连线的方向,且位于GPS1,GPS2和GPS3天线相位中心连线构成的平面内,YG轴也位于该平面内,ZG轴垂直于此平面向上,构成右手坐标系。

4) 基准参考系统(西安80坐标系)

X轴沿O所在的经纬度线指向东,轴沿O所在经纬度指向北,z轴指向天顶,X,Y,Z指向天顶。

1.2 各坐标系统间转换

1) 扫描仪极坐标系统向扫描仪直角坐标系统转换

扫描仪极坐标系统的极点与扫描仪坐标系统的原点重合,极轴与ZL轴重合,但方向相反,极平面与XL-OL-ZK平面重合,两坐标系统转换关系可表示为

式中ρ,θ为扫描点在扫描仪极坐标系统下坐标值;XL,YL,ZL为扫描点在扫描仪坐标系统下坐标值。

2) 扫描仪坐标系统向平台坐标系统转换

扫描仪坐标系统OL-XLYLZL向平台坐标系统OG-XGYGZG转换可用一般的2个空间直角坐标系转换公式表达

XT,YT,ZT,φ,ω和k为两坐标系统间的6个转换参数,转换参数可通过外业测量加以标定。

3) 平台坐标系统到西安80坐标系的转换

平台坐标系中的坐标可通过3次坐标轴旋转和平移转换到WGS-84坐标系中。其中,3个旋转角和平移向量可由3台GPS在WGS-84中的定位坐标得到,可以求出方向余弦阵RWG(方法与式(3)同),然后,采用参数化方法将WGS-84坐标系转换到西安80坐标系,即

2 、多传感器时间配准

选购的奥地利RIEGL公司的LMS-Q140i-80型激光扫描仪,这是一种二维激光扫描仪,进行“铅垂面”扫描,扫描角度为±40°内,最大扫描速度为40线,也就是说每隔25 ms会获取一条扫描线的距离信息,输出的每条扫描线的信息中包括时间信息。

本系统选用NovAtel DL-4-L1/L2型GPS接收机,原始数据输出频率和位置输出频率为20 Hz,也就是为隔50 ms获取一次定位数据信息,具有时间打标功能。为了使激光扫描仪数据和GPS数据在时间上配准起来,在启动激光扫描仪的同时对GPS数据进行时间打标,在后期处理中就可以解算出GPS时间打标信息用于两传感器的时间配准。图3是本文研究多传感器时间配准的结构图。

所谓时间配准,一方面通过硬件手段使得各传感器数据在开始的时间上对齐,如上所述;另一方面,就是对各传感器所采集的采样频率不同的目标观测数据进行内差、外推,将大粒度的观测时间点上的数据推算融合到小粒度的观测时间点上。在这里,时间配准的意义在将每个采样时刻由3台GPS获取的平台姿态信息和扫描仪获取的空间信息融合起来。

在本研究中,GPS数据输出频率为△t1=50 ms,激光扫描仪数据输出频率为△t2=25ms,这样,就需要对GPS数据进行线性内插,使得设该车载三维测量系统的数据输出间隔为△t=△t2,则对第n个时刻的激光扫描仪坐标转换到WGS-84坐标系

3、 实验结果

该实验在山东科技大学北门进行,载体速度适当,路面比较平坦。首先,利用全站仪精确量测标志点(AA6和AA7)的坐标,结果见表1。然后,再利用该车载三维测量系统对相同的标志点进行了测量,得到相应的测量结果和与标准值(全站仪获取坐标)之间的误差值,见表2。建筑物立面上特征点如图4所示。

4、 结论

从上面的实验结果(表2)可以看出:AA6点X,Y和Z方向的误差绝对值分别为0.056,0.030,0.039 m,AA7点X,Y和Z方向的误差绝对值比较大,分别为0.082,0.088,0.067m,但精度也在厘米级别,表明该车载三维测量系统定位精度比较高,证实了该系统多传感器的空间配准和时间配准方案是切实可行的,满足了该系统精度的要求。

责任编辑:gt


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    786041
  • 激光
    +关注

    关注

    21

    文章

    3578

    浏览量

    69092
  • gps
    gps
    +关注

    关注

    22

    文章

    3012

    浏览量

    172539
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    [10.2.1]--4.6.1三维空间中的平面方程_clip001

    三维空间
    jf_90840116
    发布于 :2022年12月15日 10:49:11

    [10.2.1]--4.6.1三维空间中的平面方程_clip002

    三维空间
    jf_90840116
    发布于 :2022年12月15日 10:50:20

    labview 利用三维空间画了一个球,然后想在球面上画几个点

    labview 利用三维空间画了一个球,然后想在球面上画几个点,不知道该怎么加,求助各位大牛,能不能最好把程序穿上里呀
    发表于 02-21 19:07

    请问ADXL345配合陀螺仪能精确测量短时三维空间运动路径吗?

    想请问一下加速度传感器ADXL345配合陀螺仪,能否精确测量短时三维空间运动路径,或者说它测量的准确度怎么样,对于重力加速度的消去有没有什么好的算法实现呢,不胜感激。
    发表于 02-26 14:18

    基于麦克风阵列模拟人耳进行三维空间的声源定位

    一、设计概述 /Design Introduction1.1 设计目的基于麦克风阵列模拟人耳进行三维空间的声源定位,有着广泛应用前景,可应用于大型机械产品的故障检测以及新生婴儿先天性心脏病检测筛查等
    发表于 08-06 09:21

    三维空间中每一平面有四个点,能根据这四个点画出一个圆来吗 ?

    各位大佬,想问一下就是三维空间中每一平面有四个点能根据这四个点画出一个圆来吗 ?应该如何实现?希望有人能够讲解一下不胜感激
    发表于 05-24 16:46

    基于交流伺服控制的三维空间磁场与磁力测试技术

    基于交流伺服控制的三维空间磁场与磁力测试技术:利用交流伺服控制的高精度、高稳定性的特点,以交流伺服数控设备为运动平台,采用霍尔探头、测力传感器数据采集卡和测
    发表于 07-05 19:33 11次下载

    传感器的极大似然算法研究

    数据准是传感器数据融合的先期处理过程。在研究了传
    发表于 07-10 09:14 11次下载

    基于伺服控制的三维空间磁场与磁力测试系统

    利用交流伺服控制的高精度、高稳定性的特点,以交流伺服数控设备为运动平台,采用霍尔探头、测力传感器数据采集卡和测试应用软件组成的三维空间磁场与磁力测试系统。
    发表于 09-08 15:15 17次下载
    基于伺服控制的<b class='flag-5'>三维空间</b>磁场与磁力测试系统

    电平逆变器三维空间矢量调制

    提出了三维空间矢量调制算法,直接将相参考电压映射到三维空间坐标系,所得基本矢量与开关状态矢量一一对应,不存在冗余现象。该调制算法首先确定参考矢量所在单位正方体的位置,然后在这个单位正方体上寻找合成
    发表于 03-20 14:32 0次下载
    <b class='flag-5'>多</b>电平逆变器<b class='flag-5'>三维空间</b>矢量调制

    非正交三维坐标系下电平空间矢量调制策略

    三维空间矢量进行表述),以降低三维空间矢量调制算法复杂度并优化变流器中点电位控制。在对比分析两类传统三维空间矢量调制算法优缺点的基础之上,提出一种非正交三维空间矢量。通过基本单元识别、
    发表于 04-24 17:16 5次下载
    非正交<b class='flag-5'>三维</b>坐标系下<b class='flag-5'>多</b>电平<b class='flag-5'>空间</b>矢量调制策略

    高精度三维空间定位之单目空间定位技术解析

    本文将重点介绍单目方案的空间定位。 、单目三维空间测量与定位要解决的问题 1、 求解原理和过程 如前文所述,单目三维空间测量与定位,是依据PnP原理来求解的。理论上讲,如果可以获取一
    的头像 发表于 10-16 14:54 1.2w次阅读

    适用于户外环境的三维空间椭圆信道模型

    分析MIMO天线系统性能,推导出到达角、到达时间的概率密度函数表达式,并研究影响URA空间相关性与信道容量的因素。理论分析与实验结果表明,在基于URA的三维空间椭圆信道模型中,方位扩展角(AS)是影响URA
    发表于 05-11 17:04 15次下载

    立体仓库三维空间路径优化方案的介绍

    为什么要进行立体仓库三维空间路径优化 在制造企业的智能仓储系统中,货物的转移作业是智能仓储系统中最常见作业方式,同时也是体现其效率的最关键点。选择最优化的仓位间的三维运行路径是提高智能仓储系统整体
    发表于 07-12 09:24 1262次阅读

    一种基于基础模型对齐的自监督三维空间理解方法

    三维空间理解是推动自动驾驶、具身智能等领域中智能系统实现环境感知、交互的核心任务,其中3D语义占据预测 (Semantic Occupancy Prediction) 对三维场景进行精准的体素级建模。然而,当前主流方法严重依赖大
    的头像 发表于 03-18 15:01 741次阅读
    一种基于基础模型对齐的自监督<b class='flag-5'>三维空间</b>理解方法