0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

激光引擎改善生命科学应用

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-09-05 06:20 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

wKgZombY3SOAfTgcAAFhtQIhy_s454.jpg

图 1. 在流式细胞仪中,荧光标记的细胞在流中单列通过,并受到几种不同波长的激光照射。产生的荧光在分离成不同的波长带后进行检测。

多波长激光引擎将激光源与预对准和稳定的自由空间聚焦光学器件或集成光纤传输系统相结合,简化了荧光显微镜专家和流式细胞仪 OEM 的对准和集成任务。

如今,生命科学领域成功应用的大多数光子学技术都基于某种形式的荧光检测。这些技术包括研究人员用于活细胞成像的共聚焦显微镜、为临床血细胞计数仪器提供动力的流式细胞术、DNA 测序仪等。

这些应用通常受益于使用多个激发波长。在荧光显微镜中,这允许用户激发各种目标,包括传统染料、基因表达的荧光蛋白和初始细胞内容物。在神经科学中,光遗传学技术使用一个波长来模拟或沉默目标神经元,而第二个波长通过荧光钙指示剂映射互连神经元中的反应。该方法最大限度地减少了激活和成像通道之间的串扰。流式细胞术通常使用多个波长进行多参数计数和/或分类。这意味着使用几个波长分离的荧光染料信号通过单个仪器分析细胞或其他生物颗粒。

这些不同的应用都具有一个共同的需求,即以微米或更高的精度聚焦、塑造和定位多束激光。越来越多的“激光引擎”满足了这一需求,它将光源与高度稳定的自由空间聚焦光学器件或集成光纤传输系统相结合。对于 OEM 和最终用户来说,这可以降低成本、避免耗时的光学对准程序、缩短开发时间并提高仪器的稳定性和可靠性。

多参数流式细胞仪激光引擎

激光引擎最初是为流式细胞仪开发的,流式细胞仪是基础研究中常用的仪器,用于进行血细胞计数以及对畜牧业和养鱼业的精子或胚胎进行分类。在流式细胞术中,荧光标记的细胞或其他小目标被迫以单行流的形式流过流动池(见图 1)。它们穿过几束激光束的相互作用区,这些激光束被整形并聚焦成像梯子上的横档一样排列的长线。产生的荧光和散射被收集起来,并通过二向色滤光片和带通滤光片分离成波长带,然后再进行检测。一些高性能研究仪器可以有 100 多个独立的探测器

第一批激光引擎为流式细胞仪制造商提供了使用多种激光波长的更好途径。然而,这些最初的激光引擎只是由多个单独的激光器组装而成。这不可避免地造成了冗余,因为每个激光器都有自己的控制器接口机械外壳。此外,它们是在面包板上构建的,因此用户或仪器制造商必须提供并对齐可调节的光学元件和支架。

第二代激光引擎直接针对 OEM 仪器制造商。它们的特点是小型化并使用多个激光核心。这意味着所有激光器都使用单个驱动电路板、接口和电源,并且全部包含在一个紧凑的外壳内。

这种类型的激光引擎包括光束整形和组合,每个激光器的焦点和指向都通过简单的螺旋式调节装置(每个自由度一个)独立控制。这些产品中的第一款提供了流式细胞仪中最常用的四种波长的选择:405 nm、488 nm 和 640 nm,还有可选的 561 nm(见图 2)。

wKgaombY3SSAMq0qAADIfN99K9M788.jpg

图 2. 在第二代激光引擎中,暂时移除装饰性的外壳(插图),以便对最多四种激光波长进行独立的光学调节。

如今,研究仪器制造商通常会整合两个激光引擎,以便获取从紫外线 (UV) 到 640 nm 的多达八种波长。这样,使用一台仪器就可以对多达数十种不同的数据参数进行细胞计数。

微型光学元件、更低的成本、卓越的稳定性

流式细胞仪的应用范围不断扩大,从研究到个性化医疗,再到追踪 COVID-19 等疾病的传播和进展。市场需求也促使仪器制造商缩短开发时间、减小台式机型号的尺寸、降低成本并延长维护间隔。

激光制造商正通过第三代激光引擎来支持这一趋势。它们基于微型光学元件,实现了更小的整体封装、卓越的稳定性和更高的经济性。

要实现封装尺寸的减小,需要两个关键的设计创新。第一个就是从一开始就使用直径较小的光学元件。这是有道理的,因为内部激光束直径小于 1 毫米。因此,没有令人信服的理由使用过去常用的 0.5 英寸直径透镜(约 13 毫米)及其相关的笨重支架。

其次,新引擎不使用传统的光学支架。这些传统支架由多个独立的金属部件、挠曲件和螺钉组装而成。因此,由于热循环和环境振动,它们在长期使用中不可避免地会出现偏移。

最新的激光引擎采用了一种最初为密封腔内激光器使用而开发的安装技术。它被称为 PermaTrack,其光学元件支架被取消。相反,光学元件在制造过程中对齐并永久粘合到稳定的基板上。由于没有单独的机械部件,它们在正常使用过程中不可能移动。

这种安装技术成功地消除了流式细胞仪现场维修的主要原因之一:激光重新校准,这对仪器制造商和用户都有好处。此外,由于这项最新的激光引擎技术基于生产过程中的自动化(即机器人)组装和校准,因此它提供了更好的单元间一致性。

无需打开激光引擎进行重新校准,这带来了另一个重大好处。它允许外壳密封,这样内部组件就不会暴露在灰尘或可能从有机材料中释放出的化学物质中。此外,还包括主动“吸气剂”,以进一步保护原始环境。这种方法是为工业应用提供长寿命密封可见光和紫外激光器的同一种方法的改编。

实际上,工厂校准和密封的激光引擎配置了四条(或三条)光束,通常采用交错聚焦线排列。尽管 OEM 可以指定不同的几何形状,但整个行业中这些线的相对分离已经变得相对标准化。使用可调聚焦光学元件可以在三维空间中调整光束阶梯的位置,以适应仪器组装中各个单元之间的差异。

为显微镜用户提供即插即用系统

同样的理念也应用于荧光显微镜,这种技术几乎见于每个生命科学研究实验室——从大学到制药厂。将多种激光波长引入这些显微镜的集成解决方案已经问世一段时间了。

最常见的做法是通过光纤耦合来实现。这样可以避免光学器件和相关硬件使显微镜直接空间变得杂乱。但这也意味着必须将多个激光器对准光纤,然后将它们全部耦合到显微镜的单个输入光纤中。

对于荧光显微镜,通常首选单模光纤,因为这样可以提高效率并实现清晰聚焦(更高分辨率)的样品激发。但典型的单模光纤的纤芯直径在 8.0–10.5 µm 范围内。使用具有五六个自由度的传统光纤耦合支架将激光束对准这种尺寸的光纤纤芯非常耗时。即使是经验丰富的技术人员也可能需要几个小时才能完成每台激光器的这项任务。

一旦实现了对准,在使用过程中以及长期内,仍存在着维持必要的微米级对准度的问题。操作仪器和环境温度的正常变化很容易使其失去对准度。此外,使用二向色滤光片、偏振器和波片来组合波长也是一个挑战。

激光制造商已经通过类似于光学总线的紧凑型模块解决了这个问题。这些模块将多个光纤耦合激光源的输出组合成一根单模光纤,为显微镜供电。用户通过八个特定波长的光纤端口提供输入,这些端口使用卡入式连接器。输出是一条光纤,在整个 405-640 nm 范围内具有恒定的数值孔径 (NA),无需用户进行任何调整。

如今,紧凑而智能的固态激光器几乎像灯泡一样易于操作。这使得生命科学研究人员和仪器制造商能够专注于他们的工作,而不是激光调整。这反过来又导致了荧光方法在实验室和临床环境中的普及。激光引擎的不断发展提供了同样轻松访问多种波长的能力,这将继续为荧光技术带来光明的未来。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    21

    文章

    3578

    浏览量

    69091
  • 激光器
    +关注

    关注

    18

    文章

    2882

    浏览量

    64217
  • OEM
    OEM
    +关注

    关注

    4

    文章

    418

    浏览量

    52722
  • 引擎
    +关注

    关注

    1

    文章

    367

    浏览量

    23366
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    赋能显微成像自动化:激光自动对焦传感器如何让显微镜实现批量样品的高速、全清晰扫描?

    生命科学的细胞动态到材料科学的微观结构,从半导体晶圆的纳米级缺陷到动力电池极耳的微米级焊接,普密斯LFS系列激光自动对焦传感器正以“看得更清、动得更快、适应更广”的技术特性,成为精密制造领域
    的头像 发表于 12-04 11:15 81次阅读
    赋能显微成像自动化:<b class='flag-5'>激光</b>自动对焦传感器如何让显微镜实现批量样品的高速、全清晰扫描?

    Synthio Labs完成500万美元种子轮融资,打造生命科学领域客户互动语音人工智慧操作系统

    “我们相信Synthio Labs正在定义生命科学领域的新一代重要客户互动基础设施。他们的临床级语音人工智能平台统一了制药公司的沟通方式,为一线团队提供了强大的语音助手,并为医生和患者带来全天候即时
    的头像 发表于 11-21 15:56 113次阅读

    施耐德电气如何助力生命科学与电子行业发展

    低碳转型的大势所趋下,先进制造业对于能源与运营效率的内生需求逐渐上升为行业发展的核心命题;与此同时,出海全球市场的战略方向也为企业带来了突破增长边界的全新可选项。
    的头像 发表于 09-25 16:12 385次阅读

    2025施耐德电气电子及生命科学新质生产力峰会成功举办

    近日,以“破界新生,致电未来”为主题的2025施耐德电气电子及生命科学新质生产力峰会在杭州成功举办。施耐德电气携手行业专家、生态伙伴及客户,围绕产业数智化转型升级,聚焦全球领先的绿色能源管理、绿色
    的头像 发表于 07-15 10:12 654次阅读

    施耐德电气助力生命科学行业数字化转型

    2025,生命科学行业的数字化转型趋势在何处?企业正面临哪些转型难点?
    的头像 发表于 07-02 09:53 564次阅读

    中南大学生命科学学院:可变形水凝胶微球负载金纳米颗粒,构建高灵敏度压力传感器

    机械压力感知在生物过程中扮演着至关重要的角色,然而由于检测技术的匮乏以及传感器难以有效接近组织,相关感知工作面临极大挑战。近期, 中南大学生命科学学院赵岳涛副教授团队 开发出一种基于纳米光机械转换器
    的头像 发表于 06-23 18:21 2906次阅读
    中南大学<b class='flag-5'>生命科学</b>学院:可变形水凝胶微球负载金纳米颗粒,构建高灵敏度压力传感器

    AI在医疗健康和生命科学中的发展现状

    NVIDIA 首次发布的“AI 在医疗健康和生命科学中的现状”调研,揭示了生成式和代理式 AI 如何帮助医疗专业人员在药物发现、患者护理等领域节省时间和成本。
    的头像 发表于 04-14 14:10 736次阅读

    西门子51亿美元收购Dotmatics 加码AI生命科学赛道

    德国工业巨头西门子已同意以51亿美元收购Dotmatics,作为向生命科学公司提供更多人工智能软件战略举措的一部分。 这家德国企业在周三发布的一份声明中宣布了对这家由Insight Partners
    的头像 发表于 04-03 17:37 520次阅读

    IBM Spectrum LSF在生命科学和生物制药领域的应用

    随着基因测序技术的突破、蛋白质组学,分子动力学研究的深入以及 AI 技术的崛起,生命科学与生物制药领域正经历前所未有的变革。
    的头像 发表于 03-06 09:25 803次阅读

    IBM Maximo助力生命科学行业合规远航

    近日,德勤发布的《2024中国高科技高成长 50强及明日之星报告》[1]指出,在所有高增长领域中,生命科学在近三年内比重逐年攀升,占比达到 36%,首次超越了软件与硬件行业,并位居榜首。在荣膺“中国
    的头像 发表于 02-18 09:17 936次阅读

    材料的哪些性质会影响扫描电镜下的成像效果

    中图仪器扫描电镜通过加装各类探头和附件,满足用户的拓展性需求,这使其在材料科学生命科学、纳米技术、能源等多个领域得到了广泛应用。
    发表于 02-14 09:47 0次下载

    光谱学:LDLS 揭示了分析科学应用

    图 1. LDLS 发出的光源自聚焦激光束与氙气或惰性气体混合物的相互作用。 当今生命科学和材料科学领域的尖端研究和制造应用需要能够在较长使用寿命内提供明亮且高度稳定的光的光源。一种新的光源技术已经
    的头像 发表于 02-11 09:45 715次阅读
    光谱学:LDLS 揭示了分析<b class='flag-5'>科学</b>应用

    借助NVIDIA AI Foundry平台推动医疗健康与生命科学行业发展

    借助 NVIDIA AI Foundry,全球领先的临床研究与商业服务提供商 IQVIA 将为其全球生命科学领域的客户提供 AI 智能体,助力加速药物研发、数据管理及商业化等复杂工作流。
    的头像 发表于 01-17 09:59 1262次阅读

    NVIDIA携手多家机构推动医疗健康产业变革

    NVIDIA近日宣布与IQVIA、Illumina、妙佑医疗国际和Arc研究所等顶尖机构建立新的合作伙伴关系,共同致力于通过前沿的AI和加速计算技术,推动医疗健康与生命科学产业发生深刻变革。 此次
    的头像 发表于 01-14 14:28 1534次阅读

    施耐德电气助力生命科学与电子行业的可持续发展

    在上一期《行业·启施录》之中,施家智囊团与行业大咖们共同探讨了新质生产力时代下,生命科学与电子行业的机遇与挑战。
    的头像 发表于 12-09 10:02 762次阅读