0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子纠缠:远超光速的“传输”(多图)

454398 来源:凤凰科技 作者:秩名 2014-05-09 09:41 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

量子纠缠是指粒子在由两个或两个以上粒子组成系统中相互影响的现象,这种影响不受距离的限制,即使两个粒子分隔在直径达10万光年的银河系两端,一个粒子的变化仍会瞬间影响另外一个粒子。像光子、电子一类的微观粒子,或者像分子、巴克明斯特富勒烯、甚至像小钻石一类的介观粒子,都可以观察到量子纠缠现象。

量子纠缠是一种纯粹发生于量子系统的现象;在经典力学里,找不到类似的现象。

假设,由两个粒子组成的复合系统处于量子纠缠,对于其中一个粒子做测量得到结果(例如,自旋为上旋),则另外一个粒子在之后任意时间做测量,必定会得到关联结果(在此案例里,自旋为下旋)。

量子纠缠的作用速度比光速还快。最近完成的一项实验显示,量子纠缠的作用速度至少比光速快10,000倍。这还只是速度下限。根据量子理论,测量的效应具有瞬时性质。

1935年,量子力学理论的“老对手”爱因斯坦最先指出“量子纠缠”的“荒谬之处”,在他和波多尔斯基、罗森共同发表的论文里,针对量子力学理论进行了批判,认为量子力学并不完备。

根据量子力学的“不确定性原理”,处于纠缠态的两个粒子,在被“观测”之前,其状态是“不确定”的,如果对其中的一个粒子进行观测,在确定了这个粒子状态的同时(比如为上旋),另外的一个粒子的状态瞬间也会被确定(下旋)。

这种鬼魅一般的“传递”作用不但有违常理,也“违背”了爱因斯坦的相对论,但这偏偏又是无可辩驳的事实,爱因斯坦据此认为量子力学仍然存在缺陷,是不完备的。

“上帝不掷骰子”,这是爱因斯坦的名言,也是他一直质疑量子力学之根基——“不确定性原理”的原因所在,爱因斯坦厌恶这种“不确定性”。他认为肯定还有更好的解释,甚至是更完美、更完备的理论来解释这一切。

按照爱因斯坦的理论,刨除“不确定性原理”的量子纠缠现象该这么解释:如同两个黑箱子里面各放一只手套一样,在不打开其中的一个箱子前,不确定里面是哪一只,一旦打开一个箱子,在看到这只手套的同时,可立即确定另外一个箱子里的手套是哪只。即使这两个箱子在银河系的两端。

波尔是量子力学的重要奠基人之一,他提出了关于“量子纠缠”的解释:这个现象并不违背相对论,在量子力学的层面上,在测量粒子前,你不能定义它们,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠的状态。

爱因斯坦的主张得到了物理学家薛定谔的支持,爱因斯坦和薛定谔两人,在量子力学建立的初期做出了不可磨灭的贡献,但最终两人站在了量子力学的对立面,甚至连量子理论的最初创立者普朗克,因为那骇人听闻的“解释”而走向了量子力学的对立面。

虽然爱因斯坦的解释更易被大众接受,也更易理解,但很遗憾,他是错的。实验证明,处于纠缠态的两个粒子在被测量前,其状态确实是不确定性的,这种不确定性与“黑箱手套”的解释有着根本的区别。

根据“不确定性原理”,在观测处于纠缠态的一个粒子之前,你根本无法预测这粒子是什么状态,是粒子,是波,即是粒子又是波?亦或什么都不是。只有在观测的一霎那,它“变成”了你可以测量的粒子。这个解释当然让人难以信服,按照这个解释,当你不去看月亮时,月亮也会“发散”开来,变成一团非粒子亦非波的东西。甚至当你闭眼时,整个世界都会不存在?

我国明代的思想家王阳明有句名言:“你未看此花时,此花与汝同寂,你来看此花时,此花颜色一时明白起来 。”这句话长期被当成唯心主义言论而被批判,现在看来,这简直就是量子力学解释的翻版。

为何这些现象和现实格格不入?其实量子力学的解释是基于普朗克尺度或亚原子尺度(极微观尺度)的,生活中的现象完全可以利用经典力学来解释。比如按照量子力学的原理,如果一个人不停地去撞墙,那么他确实有一定的几率“穿墙而过”,但这几率太小太小,他试到宇宙毁灭的那一刻可能都不会发生。

现代的物理学家已将量子纠缠现象视为粒子的基本特性,但是科学家仍不清楚其中的作用机制。

依据建立在“不确定性原理”基础上的“量子纠缠”,科学家们提出了“量子通信”的设想,按照不确定性的原理,这种传输信息的方式从根本上杜绝了被破译的可能,即使信息被截取,其“不确定性”使得破译者根本无从下手。

1993年,美国科学家C.H.Bennett提出了量子通信(Quantum Teleportation)的概念。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)” ——量子纠缠效益开始真正发挥其真正的威力。

在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。

1997年在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。2009年9月,潘建伟的科研团队在3节点链状光量子电话网的基础上,建成了世界上首个全通型量子通信网络,首次实现了实时语音量子保密通信。这一成果在同类产品中位居国际先进水平,标志着中国在城域量子网络关键技术方面已经达到了产业化要求。

中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将可以达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。以量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。

这个自被提出之时就让人感到“匪夷所思”的理论和现象,在现代不但得到了验证,而且会在不远的将来造福人类。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子纠缠
    +关注

    关注

    0

    文章

    38

    浏览量

    10392
  • 量子物理
    +关注

    关注

    0

    文章

    13

    浏览量

    6876
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学技术大学:实现纠缠增强纳米尺度单自旋量子传感

    中国科学技术大学与浙江大学合作,在纳米尺度量子精密测量领域取得进展,首次实现了噪声环境下纠缠增强的纳米尺度单自旋探测。 01 测量最基础的磁性单元 探测单个自旋,测量物质世界最基础的磁性单元,能够
    的头像 发表于 12-01 18:42 1393次阅读
    中国科学技术大学:实现<b class='flag-5'>纠缠</b>增强纳米尺度单自旋<b class='flag-5'>量子</b>传感

    德国斯加特大学突破量子中继器技术

    为实现量子互联网,经济实惠的光纤基础设施必不可少。但光的传输距离有限,传统光信号需定期增强,而量子信息无法简单放大、复制或转发。为此,物理学家开发量子中继器,在
    的头像 发表于 11-19 16:02 121次阅读
    德国斯<b class='flag-5'>图</b>加特大学突破<b class='flag-5'>量子</b>中继器技术

    光纤——让光速穿越时空的信息“高速公路”

    在深海电缆、跨洲光缆和城市数据中心中,一根根头发丝般细小的玻璃或塑料丝,正以每秒30万公里的光速传输着海量数据。这些被称为“光纤”的神奇材料,彻底颠覆了传统通信的物理极限,成为现代信息社会的核心
    的头像 发表于 10-30 10:51 150次阅读

    案例分享|PPLN在频率片编码的纠缠量子密钥分发中的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD中的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以通过“加工”获得
    的头像 发表于 09-22 11:11 327次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b><b class='flag-5'>量子</b>密钥分发中的应用

    模光纤传输的速率是多少

    模光纤的传输速率因技术标准和应用场景不同而存在显著差异,典型传输速率范围为10 Mbit/s至400 Gbit/s,具体速率取决于光纤类型、光源技术及传输距离。以下是详细分析: 一、
    的头像 发表于 08-22 09:55 1081次阅读

    案例分享 | 聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值

    生成高速率的纠缠光子对的能力是量子密钥分发(QKD)和量子信息处理(QIP)系统的关键要求。QKD为安全社会提供了前景,包括保护关键信息、基础设施以及有价值的数据,例如国家的电网、水务等系统。而
    的头像 发表于 06-26 11:18 2933次阅读
    案例分享 | 聚焦PPLN:1.48GHz通信波段<b class='flag-5'>纠缠</b>光子源的技术创新与商业价值

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    电子发烧友网报道(文/李弯弯)量子计算是一种基于量子力学原理的新型计算模式,其核心在于利用量子比特的叠加态和纠缠态特性,实现远超经典计算机的
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    量子技术最新进展 首款高精度量子纠缠光学滤波器问世 还有量子计算机运行十亿级AI微调大模型

    给大家带来一些量子技术的最新消息,最前沿的科研进展。 首款高精度量子纠缠光学滤波器问世 据外媒报道,美国南加州大学团队在最新一期《科学》杂志上发表量子研究报告,介绍了他们开发的首个能隔
    的头像 发表于 04-08 16:04 1337次阅读

    华为路由器量子加密传输方案测试成功

    近日,华为与某亚太领先运营商合作,成功完成了IP网络量子加密传输测试,该方案采用华为新一代路由器平台和基于ETSI接口的量子密钥传输方案。本次测试覆盖了
    的头像 发表于 03-31 09:55 736次阅读

    利用光子混合纠缠提高嘈杂条件下的传送质量

    在远距传物中,量子粒子或量子比特的状态被从一个位置传送到另一个位置,而不传送粒子本身。这种传输需要量子资源,例如一对额外的量子比特之间的
    的头像 发表于 02-18 06:17 448次阅读
    利用光子混合<b class='flag-5'>纠缠</b>提高嘈杂条件下的传送质量

    量子处理器的作用_量子处理器的优缺点

    量子处理器(QPU),又称量子级计算机处理器,是量子计算机中的核心部件,其作用主要体现在以下几个方面:   一、高速计算与处理能力   量子处理器利用
    的头像 发表于 01-27 13:44 1509次阅读

    光速电场型多值晶体管的结构

    光速电场型多值晶体管的结构
    的头像 发表于 12-27 08:08 743次阅读
    <b class='flag-5'>光速</b>电场型多值晶体管的结构

    量子隐形传态通过普通光缆成功传输

    据外媒报道,美国西北大学的研究人员把量子隐形传态通过普通光缆成功传输,研究人员通过普通光缆成功将量子态隐形传输了30公里。这表明量子隐形传态
    的头像 发表于 12-26 15:18 985次阅读

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠
    的头像 发表于 12-19 15:53 2135次阅读

    量子通信的基本原理 量子通信网络的构建

    比特(qubit)来表示,它是量子通信的基本单位。 2. 量子纠缠 量子纠缠量子通信的另一个关
    的头像 发表于 12-19 15:50 3546次阅读