0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用 GPT4V+AI Agent 做自动 UI 测试的探索

京东云 来源:jf_75140285 作者:jf_75140285 2024-06-20 15:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、背景

从 Web 诞生之日起,UI 自动化就成了测试的难点,到现在近 30 年,一直没有有效的手段解决Web UI测试的问题,尽管发展了很多的 webdriver 驱动,图片 diff 驱动的工具,但是这些工具的投入产出比一直被质疑,自动化率越多维护成本越高,大部分都做着就放弃了,还有一部分在做与不做间纠结。

本文结合一些开源的项目探索使用GPT 自动做 UI 测试的可能性。

二、方案选型

当前UI 的主要问题:一个是通过 Webdriver 控制浏览器执行,这些工具都需要先查找到对应元素的 Elements,无论是录制的还是自己编写的在面对 UI 变化,元素变化时都需要耗费很大的精力去重新识别,解析 Dom 查找,这个工作乏味且没有效率;另一种是通过图像进行点击,比如 Sikuli 这种工具,主要的问题也是复用性较差,换个分辨率的机器或者图片发生少的改动就不可用。

使用 GPT 做 UI 测试尝试了两种方案:

第一种将 Html 元素投喂给 GPT,主要方法获取 Html代码,对 Html 做初步缩减处理,再做向量化,然后喂给 GPT4 自动生成 Webdriver 驱动脚本,效果一般,而且因为 Html 比较大,Token 的消耗很大。

第二种思路是让 GPT 像人一样思考和测试,比如一个人打开一个网页后,他通过眼睛看到的页面文字或图标,然后用手完成点击和输入的操作,最后通过页面的弹窗或者文字来识别是否有错误,这几个动作通过大脑统一协调。

这里主要介绍第二种.

三、新方案实践

1.新方案简介

新的方案主要结合 Playwright,SoM视觉标记,GPT4Vison,GPT4,AutoGen来实现。主要的原理

通过 Playwright进行浏览器操作,包括页面图像的获取、浏览器的各种操作,相当于‘‘手’’;

进行SoM 视觉数据标记,因为 GPT4Vison 在进行页面原始识别时并不是很准确,参考微软的论文可以通过视觉标记的手段来辅助 GPT4V 识别,相当于“眼睛”。

通过GPT4+AutoGen 将这些步骤串起来实现协调控制,相当于“大脑”和“神经中枢”。

2.主要架构



wKgaomZz3VOAPrwVAAH-GDO9wd0403.png

3.实现步骤

1. 使用 Playwright 注入 JS

browser = playwright.chromium.launch(channel="chrome",headless=False)
context = browser.new_context()
page = context.new_page()
page.goto("http://oa.jd.com/")
inject_js ="./pagemark.js"
withopen(inject_js,'r')asfile:
    content =file.read()
    page.evaluate(f"{content}")

2. SoM 视觉提示标记

如前文提到的 GPT4V 并不能有效的识别 Web 的元素,所以在使用 GPT4V 之前进行图像标记,图像标记现在有两种方式,一种是通过 AI 识别图片进行标记,这种主要利用在对静态图片图像的识别,对于 Web 页面的标记,我们可以采用注入 JS 修改页面元素的方式来标记。这里通过在浏览器中注入 pagemark.js,利用 Playwright 执行 js 函数来完成页面的标记,该 JS 能够完成标准的coco annotation的标注。

// DOM Labelerlet labels =[];functionunmarkPage(){
 for(const label of labels){
 document.body.removeChild(label);
 }

 labels =[];
 }

 functionmarkPage(){
 unmarkPage();
 
 var bodyRect = document.body.getBoundingClientRect();

 var items =Array.prototype.slice.call(
 document.querySelectorAll('*')
 ).map(function(element){
 var vw = Math.max(document.documentElement.clientWidth ||0, window.innerWidth ||0);
 var vh = Math.max(document.documentElement.clientHeight ||0, window.innerHeight ||0);
 
 var rects =[...element.getClientRects()].filter(bb=>{
 var center_x = bb.left + bb.width /2;
 var center_y = bb.top + bb.height /2;
 var elAtCenter = document.elementFromPoint(center_x, center_y);
  
  return elAtCenter === element || element.contains(elAtCenter) 
 }).map(bb=>{
 const rect ={
 left: Math.max(0, bb.left),
 top: Math.max(0, bb.top),
 right: Math.min(vw, bb.right),
 bottom: Math.min(vh, bb.bottom)
  };
  return{
 ...rect,
 width: rect.right - rect.left,
 height: rect.bottom - rect.top
  }
  });

  var area = rects.reduce((acc, rect)=> acc + rect.width * rect.height,0);

 return{
 element: element,
 include: 
 (element.tagName ==="INPUT"|| element.tagName ==="TEXTAREA"|| element.tagName ==="SELECT")||
 (element.tagName ==="BUTTON"|| element.tagName ==="A"||(element.onclick !=null)|| window.getComputedStyle(element).cursor =="pointer")||
 (element.tagName ==="IFRAME"|| element.tagName ==="VIDEO")
 ,
 area,
 rects,
 text: element.textContent.trim().replace(/s{2,}/g,' ')
 };
 }).filter(item=>
 item.include &&(item.area >=20)
 );

 // Only keep inner clickable items
 items = items.filter(x=>!items.some(y=> x.element.contains(y.element)&&!(x == y)))

 // Function to generate random colors
 functiongetRandomColor(){
 var letters ='0123456789ABCDEF';
 var color ='#';
 for(var i =0; i < 6; i++){
 color += letters[Math.floor(Math.random()*16)];
 }
 return color;
 }

 // Lets create a floating border on top of these elements that will always be visible
 items.forEach(function(item, index){
 item.rects.forEach((bbox)= >{
 newElement = document.createElement("div");
 var borderColor =getRandomColor();
 newElement.style.outline =`2px dashed ${borderColor}`;
 newElement.style.position ="fixed";
 newElement.style.left = bbox.left +"px";
 newElement.style.top = bbox.top +"px";
 newElement.style.width = bbox.width +"px";
 newElement.style.height = bbox.height +"px";
 newElement.style.pointerEvents ="none";
 newElement.style.boxSizing ="border-box";
 newElement.style.zIndex =2147483647;
 // newElement.style.background = `${borderColor}80`;
 // Add floating label at the corner
 var label = document.createElement("span");
 label.textContent = index;
 label.style.position ="absolute";
 label.style.top ="-19px";
 label.style.left ="0px";
 label.style.background = borderColor;
 label.style.color ="white";
 label.style.padding ="2px 4px";
 label.style.fontSize ="12px";
 label.style.borderRadius ="2px";
 newElement.appendChild(label);
 
 document.body.appendChild(newElement);
  labels.push(newElement);
  console.log(index)
  
  });
  })
 }

以某系统为例,标注后的效果如下图:

wKgZomZz3VSARCAcAAchE3Vf-v4276.png

将标记元素的位置编号保存到本地coco.json

{ 
    "1":{"x":"10","y":"40","w":"8","h":"10","center_x":"30","center_y":"13"}, 
    "2":{"x":"20","y":"40","w":"16","h":"10","center_x":"30","center_y":"21"}, 
    "10":{"x":"40","y":"80","w":"16","h":"10","center_x":"80","center_y":"21"}}

其中 center_x, center_y 为元素的中心点坐标

3.GPT4V 识别

Prompt

我上传了一张网页截图,页面元素已经使用COCO Annotator进行了数字标记。
请分析这张图片,并识别出网页的用途以及各个标记元素的功能。基于你的分析,请生成一个规划路径来完成以下任务:
- 输入ERP搜索。            
- 检查列表是否为空            
请使用图片中的数字标记来描述完成任务的具体步骤。

GPT4V Response

这张图片显示的是一个具有多个数字标记的网页截图。根据这些标记,我们可以推测出网页的用途以及各个元素的功能。
为了完成您提出的任务,我们可以按照以下步骤操作:
nn1. 使用标记为10的搜索框输入ERP搜索词。这个搜索框的标签显示为“搜索框输入erp”,表明它用于输入搜索词。
nn2. 点击标记为17的搜索按钮。这个按钮的标签是“搜索”,表明它用于提交搜索请求。
nn3. 检查列表是否为空。这个步骤可能需要查看标记为19的区域,这个区域被标记为“列表内容”,如果这个区域没有显示任何内容或者有提示信息显示列表为空,则说明搜索结果为空。
nn以 上步骤基于图片中的数字标记和元素标签来描述完成任务的具体操作。"

提取元素坐标

利用正则表达式从GPT4V 的 response 中提取查询到的元素的 bbox id= 10,17,19, 结合在 SoM 标记中记录的 json 文件,找到编号 10 的元素坐标"10":{"x":"40","y":"80","w":"16","h","10","center_x":"80","center_y":"21"}

class GPT4VRecognize
     def get_location(self, query):  
         coco_json='./coco.json'
         withopen(coco_json,'r') as file: 
             content =file.read() 
         matches=re.findall(r'd+',gpt4v_response_content)
         num=-1
         iflen(matches)>0:
             num=matches[0]
         data = json.loads(json_str) 
         center_x = data[num]["center_x"]
         center_y = data[num]["center_y"]
         return center_x,center_y
  

4.Playwright操作页面

Playwright是一个非常强大的操作浏览器的工具,这里因为前面已经通过 GPT4V 识别了图片,所以我们主要通过 坐标 的方式来控制元素,不再需要解析Dom 来控制,主要的包括,点击,双击,鼠标拖动,输入,截图等:

class Actions:
    page=None
    __init__(self,url):
        global page
        browser = playwright.chromium.launch(channel="chrome",headless=False)
        context = browser.new_context()
        page = context.new_page()
        page.goto("http://oa.jd.com/")
    def mouse_move(self,x,y):
        page.mouse.move(self,x,y)
    def screenshot(self):
        page.screenshot()
    def mouse_click(self,x,y):
        page.mouse.click(self,x,y)
    def input_text(self,x,y,text):
        page.mouse.click(self,x,y)
        page.keyboard.type(text) 
    def mouse_db_click(self,x,y):
    def select_option(self,x,y,option):
    ......

5.使用 AutoGen编排

AutoGen是一个代理工具,它能够代理多个 LLM在不同会话间切换,能够自动的调用预定的函数,并协调这些 LLM 完成任务。

在上面的程序中,实现了:眼睛:通过 GPT4V 来识别元素;手:通过 Playwright 来做各种操作;后面需要通过一个大脑来协调手、眼完成任务,这里通过 GPT4+AutoGen 来实现大脑的协同调度。

config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
assistant= autogen.AssistantAgent(
name="assistant",
system_message=
    """
    You are the orchestrator responsible for completing a task involving the UI window. 
    Utilize the provided functions to take a screenshot after each action. 
    Remember to only use the functions you have been given and focus on the task at hand.
     """,
 llm_config={"config_list": config_list},
)
 user_proxy = autogen.UserProxyAgent(
 name="brain_proxy",
 human_input_mode="NEVER",
 code_execution_config={"work_dir":"coding"},
 max_consecutive_auto_reply=10,
 llm_config={"config_list": config_list},)

action = Actions(url)
gpt4v=GPT4VRecognize()
user_proxy.register_function(
     function_map={
         "get_location": gpt4v.get_location,
         "mouse_move":action.mouse_move,
         "screenshot":action.screenshot,
         "mouse_click":action.mouse_click,
         "mouse_dbclick":action.mouse_dbclick,
         "select_option":action.select_option 
     })
def run(message_ask):
    user_proxy.initiate_chat(assistant,message=message_ask)

if __name__ =="__main__":
    run("通过 输入erp 'wwww30' 搜索结果,并检查是否返回空列表")
 

四、问题和后续

1.当前的主要问题

本文主要抛砖引玉,通过一种完全按人类思维进行 UI测试的方式,在实验过程中还有很多问题待解决。

1. GPT 在中文语境下识别的不太友好,在实验过程中对中文的 prompt 理解有误,需要不断的优化 prompt,尤其是页面中的中文元素。

2. AutoGen 对于处理预定义的动作也会有问题,需要不断调优。

3. GPT4V 真的很贵。

2.未来的想法

1. 将每次向 GPT4V请求的图像识别做本地化处理,结合现有的一些测试方法,从而减少 Token,缩短执行耗时。

2. 面向业务的 GPT需要不断训练,将系统使用手册和一有的 PRD 文档投喂给 GPT,增强 gpt 的系统识别和测试能力。

五、参考

1.Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V

2.Microsoft AutoGen

3.GPT-4V-ACT

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 测试
    +关注

    关注

    8

    文章

    6027

    浏览量

    130710
  • AI
    AI
    +关注

    关注

    89

    文章

    38090

    浏览量

    296529
  • GPT
    GPT
    +关注

    关注

    0

    文章

    368

    浏览量

    16713
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    研华工业AI Agent的发展态势及实践思考

    工业 4.0 风起云涌之际,AI Agent 产业化落地成为各界竞逐焦点。研华科技凭借深厚的行业积淀,勇于创新、积极探索,在企业级工业 AI Age
    的头像 发表于 06-23 09:31 813次阅读

    【「零基础开发AI Agent」阅读体验】+读《零基础开发AI Agent》掌握扣子平台开发智能体方法

    收到发烧友网站寄来的《零基础开发AI Agent》这本书已经有好些天了,这段时间有幸拜读了一下全书,掌握了一个开发智能体的方法。 该书充分从零基础入手,先阐述了Agent是什么,它的基本概念和知识
    发表于 05-14 19:51

    【「零基础开发AI Agent」阅读体验】+Agent开发平台

    Agent开发平台上,开发者可以个性化地设计Agent与用户的对话页面,一般包括开场白、预设问题、自定义UI组件、数字人声音及语音对话等。 7)调试与校验 调试与校验功能用于测试
    发表于 05-13 12:24

    【「零基础开发AI Agent」阅读体验】+Agent的工作原理及特点

    如图2所示。 图2 提示词编写万能公式 要搭建AI应用可分为5个层次,见图3所示。 图3 AI应用层次 Agent的能力与特点: 以设置闹钟和Agent叫醒服务的对比为例来说明
    发表于 05-11 10:24

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    4.智能体具有自主规划和行动的能力 5.大模型分为3个层次:基础层(心脏)、垂直/行业层(动脉)、应用层(毛细血管) 6.AI Agent具备更显著的去中心化特点,能够充分满足每个人独特的需求
    发表于 05-02 09:26

    【「零基础开发AI Agent」阅读体验】+初品Agent

    期待中的《零基础开发AI Agent——手把手教你用扣子智能体》终于寄到了,该书由叶涛、 管锴、张心雨完成,并由电子工业出版社出版发行。 全书分为三个部分,即入门篇、工具篇及实践篇。由此可见这是
    发表于 04-22 11:51

    请求赠阅《零基础开发AI Agent——手把手教你用扣子智能体》

    博主好!致敬叶涛 管锴 张心雨三位AI具身智能-智能体方面的专家、导师! 《零基础开发AI Agent——手把手教你用扣子智能体》一不懂编程的多数大众也可以开发
    发表于 04-10 12:16

    《零基础开发AI Agent——手把手教你用扣子智能体》

    《零基础开发AI Agent——手把手教你用扣子智能体》是一本为普通人量身打造的AI开发指南。它不仅深入浅出地讲解了Agent的概念和发展
    发表于 03-18 12:03

    名单公布!【书籍评测活动NO.59】零基础开发AI Agent——手把手教你用扣子智能体

    的新技术实践指南,助你把握科技大势。 ▊《零基础开发AI Agent——手把手教你用扣子智能体》 叶涛管锴张心雨 著 不懂编程也可以开发Agent
    发表于 03-10 16:29

    【「AI Agent应用与项目实战」阅读体验】书籍介绍

    会追根溯源,让你有种“大彻大悟”的感觉。 这本书主要讲大语言模型的内容,教我们做一个AI Agent应用出来,其实这个东西现在也叫智能体了,他跟我们平常使用大语言模型有个不同点在于他会专注某个领域
    发表于 03-05 20:40

    AI Agent 应用与项目实战》----- 学习如何开发视频应用

    再次感谢发烧友提供的阅读体验活动。本期跟随《AI Agent 应用与项目实战》这本书学习如何构建开发一个视频应用。AI Agent是一种智能应用,能够根据用户需求和环境变化做出相应响应
    发表于 03-05 19:52

    AI Agent应用与项目实战》阅读体验--跟着迪哥学Agent

    感谢电子发烧友的这次活动,让我有幸抽中了《AI Agent应用与项目实战》(以下简称《Agent》)这本书的赠送。 收到书本之后我就迫不及待地学习书本中的知识。如果说依靠各种平台上的文章了解关于
    发表于 03-02 12:28

    AI Agent 应用与项目实战》阅读心得2——客服机器人、AutoGen框架 、生成式代理

    了语言的自然度。 第4章是讲述AutoGen Agent开发框架实战。微软开源的AutoGen框架为Agent开发提供了革新性的解决方案。该框架最突出的技术特点在于其多智能体协作机制,通过定义不同角色
    发表于 02-25 21:59

    AI Agent 应用与项目实战》第1-2章阅读心得——理解Agent框架与Coze平台的应用

    过年前申请的活动,这本书我早就在关注了,也是目前市面上少有的专门从技术角度结合实战讲解AI Agent 的书籍。我了解到本书主编是被戏称为“深度学习——中国分父”的迪哥,就知道这本书写的相对会贴近
    发表于 02-19 16:35

    名单公布!【书籍评测活动NO.55】AI Agent应用与项目实战

    出来,当前的AI Agent并不仅仅是简单的对话机器人或根据固定流程的自动化程序,而是成为了一种能够自主完成任务的智能体,它正在迅速改变人类的工作和生活方式。其核心特性包括自主性、学习能力、目标导向和交互性
    发表于 01-13 11:04