0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CuInP2S6在极端高压下的变化及拉曼光谱分析的应用

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-05-07 07:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

wKgZomY5YYGAH2zzAAVVXAgPYIs366.png

(a) CIPS单层的示意图。其中Cu、In、P和S原子分别用蓝色、粉红色、紫色和黄色表示。(b) 本研究中所用CIPS单晶的典型光学图像。(c) 用633纳米激发获得的CIPS在室温、环境压力下的拉曼光谱。图中标注了振动模式的类型。(d) 四种模式的声子本征矢量。

范德华二维材料和CuInP2S6的高压行为

近年来 ,范德华二维材料由于其独特的物理性质而受到广泛关注。CuInP2S6(CIPS)作为这一类材料的代表,因其铁电性质和高居里温度而备受瞩目。尽管其铁电性质已被广泛研究,但关于CIPS在极端高压下的行为和物理机制的研究仍相对有限。本文旨在讨论拉曼光谱技术如何揭示CIPS在高压环境下的结构和电子性质的变化。(文章名称《Raman spectroscopy study of pressure-induced phase transitions in single crystal CuInP2S6》The Journal of Chemical Physics DECEMBER 12 2023 )

01、实验数据及分析

文章摘要:CuInP2S6是一种在室温下具有铁电性的层状材料,其性质源自有序Cu+和In3+阳离子在(P2S6)4−阴离子骨架中的独特结构排列。通过详细的拉曼光谱研究,探讨了静水压对CuInP2S6单晶结构的影响。通过分析峰频、强度和宽度,揭示了四个高压区域内的想变现象。在5GPa时,材料发生了单斜到三角的相变。在更高的压力下(5-12 GPa),观察到拉曼峰的变尖,表明电子结构发生变化;在12至17 GPa之间出现了非共格相。在17GPa以上,材料能带隙减小的证据。材料的原始状态在减压后完全恢复,表明静水压可以用来调节CuInP2S6的电子和铁电性质。

相变观察

在研究中显示,CIPS在大约5 GPa的压力下经历了从单斜相到三角相的转变。这一结构变化导致了材料的对称性提高,从而在拉曼光谱中减少了活性模式的数量。这种相变对于理解材料在极端环境下的稳定性和应用潜力具有重要意义。在常压下,CIPS表现为单斜晶体结构。

当压力超过5 GPa时,材料转变为具有更高对称性的三角相。这一转变在拉曼光谱中表现为可观测拉曼峰数目的减少,这是由于三角相的更高对称性所致。在5至12 GPa之间,某些拉曼模式明显变尖,表明电子能带结构发生变化,可能与能隙减小有关。然而,在12至17 GPa之间,这些趋势出现了逆转,表明存在不共格结构。这个相变被归因于层间堆叠的微小变化和进一步的压缩,导致能隙减小。在17 GPa以上,出现了显著的能隙减小的证据,可能导致金属化。

wKgaomY5YYKACwBVAAvc3G0LISY324.png

上图显示了对CIPS单晶体进行压缩(高达20 GPa)时的拉曼光谱。

高压下的频率和强度变化

频率变化:在高压条件下,拉曼峰的频率变化通常与晶体结构的变化密切相关。对于CIPS,从单斜相到三角相的转变伴随着明显的频率跳跃。这种跳跃通常反映了晶格参数的变化,尤其是与原子间距离的缩短和晶格对称性的增加有关。

频率增加:当压力导致晶格参数减小,原子间作用增强时,拉曼活性模式的频率往往会增加。这是由于原子质量不变,而弹性常数增加,导致振动频率上升。

频率下降:在某些情况下,尤其是当压力导致结构相变,例如从有序结构到更为随机的结构时,一些模式的频率可能会下降。这可能与晶格中新的对称性或非谐效应有关。

强度变化:拉曼峰的强度变化反映了材料在高压下电子结构的调整,特别是与电子云的重排和键合性质的改变有关。

强度减弱:随着压力的增加,特定拉曼模式的强度可能会减弱。这种强度的减弱常常与材料相变相关,如从铁电相到非铁电相的转变,导致某些振动模式的拉曼活性降低。

强度增加:在某些情况下,拉曼峰的强度可能会增加,尤其是当压力诱导结构变得更加紧密和有序时。增强的晶格有序度可以提高特定振动模式的拉曼散射截面。

wKgaomY5YYKAPPVuAAiYMrY9q-U303.png

显示CIPS在压缩过程中拉曼峰频率变化的2D热图。标有约5、13和17 GPa处的三个转变,表示为虚线水平线。颜色标尺对应于峰强度(计数),归一化到钻石拉曼峰。

wKgaomY5YYOAdmA-AAVczqjZDeo228.png

(a)-(d) CIPS拉曼光谱中几个峰的拉曼峰频率(顶行)、强度(中行)和宽度(FWHM,底行)随压力的变化。三个相变由阴影垂直框显示。

在CuInP2S6(CIPS)等材料的研究中,拉曼光谱分析中的频率和强度变化不仅反映了晶体结构的变化,还提供了关键的信息,用于理解材料在高压下电子结构的变化。带隙和电子结构分析特别关键,因为这些属性直接影响材料的电子和光电性能。

带隙分析:在材料科学中,带隙是指材料中价带顶部和导带底部之间的能量差距,它决定了材料的电子性质,如导电性、半导体特性和光吸收特性。在高压下,CIPS等材料的带隙可能会因晶格结构的紧缩和电子云重排而变化:

带隙减小:随着压力的增加,CIPS晶体中的原子间距减小,导致电子波函数重叠增加,电子间的相互作用增强。这种增强的相互作用往往导致导带和价带之间的能量差减小,从而缩小带隙。带隙减小通常意味着材料在光电应用中能够在较低能量范围内激发电子,提高其光敏性。

电子能级调整:压力不仅可以影响带隙大小,还可以引起价带和导带中电子能级的重新排列,这可能影响材料的化学稳定性和反应活性。

电子结构分析:电子结构分析涉及研究材料中电子的分布和行为,这对于了解材料的物理、化学和光电性质至关重要。拉曼光谱提供了一种通过观察晶格振动模式变化间接研究电子结构变化的方法:

振动模式的变化:晶格振动模式的变化(例如频率、强度和宽度的变化)可以反映电子结构的变化。特定的振动模式可能与电子态的变化密切相关,比如某些特定的振动模式强度的增加或减少可能指示电子密度在晶格中的重新分布。

相变和电子性质:高压下的相变通常伴随着电子性质的显著变化。例如,从非金属到金属的转变涉及到电子导带和价带的重叠,这可以通过拉曼光谱中相关振动模式的变化观测到。

02、光谱仪重要作用

wKgZomY5YYOAcgHQAAQCwY0FR30842.jpg

光谱仪在研究CuInP2S6(CIPS)等材料的高压行为中起到了几个关键性的作用,特别是在观察相变、分析高压下的频率和强度变化,以及带隙和电子结构的分析方面。以下是光谱仪在这些研究领域中发挥的核心功能:

1、高压下的晶体结构变化:

使用拉曼光谱仪或红外光谱仪,可以监测高压下材料内部晶格振动模式的变化,提供晶体结构变化的直接证据。通过光谱数据,可以确定压力诱导的相变,例如从铁电相到顺电相的转变。

2、高压下的电子结构变化:

利用紫外-可见-近红外(UV-Vis-NIR)光谱仪,可以分析高压对材料带隙的影响。测量吸收光谱或光致发光光谱,可用于评估电子结构随压力的变化,并确定半导体特性的转变。

3、高压下的光电性能变化:

在高压光电性质研究中,光谱仪可以用于测定材料的光响应、量子效率等性能的变化。高压环境下的光电行为变化可以为材料在特定应用领域的潜力提供有力依据。

4、高压下的铁电性和极性变化:

对于具有铁电性的材料,光谱仪可以通过光谱特征的变化揭示压力对铁电性的影响。可以利用光谱仪监测材料在高压下的极性变化,包括极化方向、强度和开关行为。

总的来说,光谱仪在通过拉曼光谱研究材料在极端条件下的行为时,不仅提供了观察和记录相变的手段,还使得科学家能够深入理解材料在结构和电子层面上的复杂变化。这些功能使得光谱仪成为材料科学研究中不可或缺的工具,尤其是在探索未知的高压物理现象方面。

闪光科技为您提供的整体拉曼光谱测试系统,是一种专为高压环境下的材料分析设计的先进设备。这一系统结合了最新的光学技术、高精度的压力控制和精细的数据处理软件,旨在提供无与伦比的测量精度和操作便捷性,是研究极端条件下材料性质的理想选择。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光谱仪
    +关注

    关注

    2

    文章

    1204

    浏览量

    32357
  • 拉曼光谱
    +关注

    关注

    0

    文章

    95

    浏览量

    3154
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    红外光谱技术应用与原理分析

    分析检测领域,红外光谱分析技术作为一种高效、准确的分析检测手段,能够快速准确地识别各类化合物的分子结构特征。这项技术基于一个简单却精妙的原理:当红外光照射样品时,分子中的化学键会吸收
    的头像 发表于 11-11 15:21 233次阅读
    红外<b class='flag-5'>光谱</b>技术应用与原理<b class='flag-5'>分析</b>

    常见增强光谱信号的技术详解

    的,以下是几种常见的增强型技术。 一,共振增强(RRS) 共振
    的头像 发表于 11-10 09:18 319次阅读
    常见增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>信号的技术详解

    光谱专题3 |揭秘光谱仪光栅选择密码,解锁微观世界的神奇利器

    微观世界的探索之旅中,光谱仪无疑是科研人员和工程师们的得力助手。而在拉光谱仪中,衍射光栅
    的头像 发表于 11-05 11:05 794次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题3 |揭秘<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪光栅选择密码,解锁微观世界的神奇利器

    激光光谱分析仪选购实用攻略:5大关键参数解析与注意事项

    化学分析、材料检测和环境监测等领域,激光光谱分析仪的需求不断上升。许多研究机构和实验室采购此类设备时,往往面对市场上琳琅满目的产品,难以选择合适的型号。如何判断一台激光
    的头像 发表于 08-13 11:33 536次阅读
    激光<b class='flag-5'>光谱分析</b>仪选购实用攻略:5大关键参数解析与注意事项

    光谱专题2 | 光谱中的共聚焦方式,您选对了吗?

    光谱专题2|光谱中的共聚焦方式,您选对了吗?
    的头像 发表于 07-23 11:05 1803次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题<b class='flag-5'>2</b> | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>中的共聚焦方式,您选对了吗?

    光谱专题1 | 光谱揭秘:新手也能轻松迈入光谱学之门

    你是否想过,一束光照射物质后,能揭开其分子层面的秘密?今天,就让我们走进神奇的光谱世界,哪怕是光谱学小白,也能轻松入门!光照射物质时,大部分光子如同调皮的孩子,以瑞利散射的形式“原
    的头像 发表于 06-23 11:07 2766次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>专题1 | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>揭秘:新手也能轻松迈入<b class='flag-5'>光谱</b>学之门

    应用介绍 | 单光子计数光谱

    单光子计数光谱实验装置示意图脉冲激光聚焦样品表面,激发样品产生荧光和散射,单光子探测器
    的头像 发表于 05-20 16:07 631次阅读
    应用介绍 | 单光子计数<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    为什么选对激光波长对光谱很重要

    对于刚接触光谱的研究者,最常提出的问题是:"我需要什么激光激发波长?" 答案显然取决于待测材料本身。材料的散射截面及其物理光学特性都
    的头像 发表于 04-29 09:13 597次阅读

    如何利用高光谱相机实现精确的光谱分析

    空间信息基础上增加第三维的光谱信息。 这种技术基于物质对不同波长光的吸收、反射特性具有"指纹"效应的原理。每种物质都有其独特的光谱特征,通过分析这些特征,我们能够准确识别物质的成分和状态。 一、实现精确
    的头像 发表于 03-28 17:05 835次阅读
    如何利用高<b class='flag-5'>光谱</b>相机实现精确的<b class='flag-5'>光谱分析</b>?

    长光辰芯发布光谱分析专用线阵CMOS图像传感器GLR1402BSI-M

    近日,长光辰芯正式推出其首款专门面向光谱分析领域而设计的线阵背照式CMOS图像传感器——GLR1402BSI-M。这款产品的发布,标志着长光辰芯光谱分析技术领域迈出了重要的一步
    的头像 发表于 02-07 14:17 1434次阅读

    爱德万ANVANTEST Q8341 光谱分析

    /0.5s以下 --  一般参数:显示:6.5”color,LCD   --  尺寸:424mm(宽)X132mm(高)X500mm(深) 爱德万Q8341光谱分析仪,作为光学测量领域的璀璨明珠,以其卓越的性能、精准的分析能力和
    的头像 发表于 02-06 17:49 762次阅读

    紫外线光谱分析与应用 紫外线水处理系统的工作原理

    紫外线光谱分析与应用 紫外线(UV)光谱分析是一种利用紫外线的特性来识别和分析物质的技术。紫外线是指波长在10纳米至400纳米之间的电磁波,它位于可见光谱的紫端之外。紫外线
    的头像 发表于 12-17 15:20 2077次阅读

    安立Anritsu MS9710B 光谱分析

    产品简介 MS9710B光谱分析仪是一种衍生光栅型光谱分析仪,用于分析 600 至 1750nm波段范围内的光谱。具有自动测量、峰值自动搜索、谱宽计算、标记到标记间
    的头像 发表于 12-16 10:33 828次阅读

    高压放大器气体光谱检测技术研究中的应用

    实验名称:气体光谱检测装置的设计与搭建 测试目的:开展气体光谱检测技术的研究,并设计基于
    的头像 发表于 12-12 10:57 741次阅读
    <b class='flag-5'>高压</b>放大器<b class='flag-5'>在</b>气体<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测技术研究中的应用

    Agilent/安捷伦86146B 光谱分析

    Agilent/安捷伦86146B 光谱分析仪 Agilent 86146B 光谱分析仪主要特性与技术指标主要性能指标高振幅精度(0.5分贝)和稳定性(10mdB),低偏振依赖性(50mdB) 较宽
    的头像 发表于 12-11 14:19 771次阅读