0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

南科大在激光超分辨率纳米制造领域取得系列进展

led13535084363 来源:光行天下 作者:光行天下 2022-11-04 14:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日,南方科技大学机械与能源工程系助理教授徐少林团队围绕“激光超分辨率纳米制造”主题,在Nature Communications, Advanced Optical Materials, Laser & Photonics Reviews, Nano LettersACS Applied Materials & Interfaces等激光微纳米制造领域高水平期刊上发表系列论文,内容涉及激光亚波长图案化纳米制造、激光诱导周期性纳米光栅制造、线形脉冲激光跨大尺度微纳复合制造、耐久性纳米锥的激光掺杂增强等离子体刻蚀制造等。

0559851e-5bfe-11ed-a3b6-dac502259ad0.jpg

在激光亚波长图案化纳米制造方面,大面积无拼接超衍射极限图案化纳米制造在半导体光学微纳器件等领域具有至关重要的作用,开发低成本、高效率制备技术及配套设备对于上述领域的高质量发展具有极其重要的意义。

研究人员利用准二元相位掩模对光束进行偏振过滤,结合偏振与相位优化,得到了具有亚波长图案化波前的超快激光脉冲,使用快速扫描形成脉冲分离进行周期性改性/烧蚀,在大气环境下实现了晶圆级表面图形化微纳结构的均匀高效制造。制备的图案化结构在设计上高度自由可控,且具有亚波长图形分辨率(520 nm波长实现了300 nm的图形分辨率),无拼接现象。研究人员设计并加工了超表面吸收器器件,在中红外波段(3-7微米)实现了高达98%的单峰和双峰吸收率。

上述开发的高效激光亚波长图案化加工方法具有普适性,且能够适用于任意薄膜材料的图案化加工。相关研究结果以“Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-areametasurfaces”为题,发表在Nature Communications上,以“Large-Scale Laser Nanopatterning of Multiband Tunable Mid-Infrared Metasurface Absorber”为题,发表在Advanced Optical Materials上。

057427d4-5bfe-11ed-a3b6-dac502259ad0.png

图1.新型亚波长图案化整形脉冲激光光刻技术

在激光诱导周期性纳米光栅可控制造方面,激光诱导周期性表面结构(LIPSS)能够突破光的衍射极限,获得亚波长(~λ/2)至超深亚波长(~λ/8)分辨率的纳米光栅结构,但其结构的空间长程无序性限制了其在工业界的应用。

研究人员基于对超快激光激发表面等离激元波干涉现象的研究,首次系统解释了激光诱导纳米光栅结构空间分布紊乱的成因,并提出了相应的调控策略,即利用表面等离激元波干涉所引起的自对准现象,实现了长程有序亚波长光栅结构的高效大面积制备。进一步,对超快光源进行光束整形,形成均匀一致的线光源,通过调整激光加工策略,在单次扫描中稳定实现了成千上万二维阵列单元的自发生成,达到了在晶圆级大小样品上高效制备均匀二维纳米结构的目的。上述研究工作以“Self〢ligned Laser㊣nduced Periodic Surface Structures for Large〢rea Controllable Nanopatterning”为题,发表在Laser & Photonics Reviews,以“Self-Aligned Plasmonic Lithography for Maskless Fabrication of Large-Area Long-Range Ordered 2D Nanostructures”为题,发表在Nano letters上。

05cd1c18-5bfe-11ed-a3b6-dac502259ad0.png

图2. 基于激光诱导周期性表面结构自对准现象开发的高效二维纳米图案化技术

在线形脉冲激光跨大尺度微纳复合制造方面,跨大尺度分级金属微纳米网格结构(亚100nm至数微米尺度)是提高透明柔性电子器件的透光性、导电性和机械稳定性的一种有效途径,然而高效经济地制备上述微纳复合结构仍极具挑战性。

研究人员创造性地提出了一种单步无掩膜线形脉冲激光光刻技术,通过调制线形脉冲光源的分离烧蚀,可高效制备线宽从50 nm至数微米连续可调的金属网格线。研究人员利用该技术设计并制备了一种柔性透明电极,在保证透过率大于80%的前提下,得到了4.6 Ω/sq的薄层电阻,在经过1000次的抗弯测试后仍能保持良好的光电性能。进一步,研究人员将该技术应用于制备一种柔性多向应变传感器,利用单层薄膜实现了多向应变传感的功能,且在灵敏度和响应性方面都具有显著优势,且显示出良好的机械稳定性和循环稳定性。

相关研究内容以“Laser-patterned hierarchical aligned micro-/nanowire network for highly sensitive multidimensional strain sensor”为题,发表在ACS Applied Materials & Interfaces上,以“Line-shaped laser lithography for efficiently fabricating flexible transparent electrodes with hierarchical metal grids across λ/10 to microscale”为题,发表在Advanced Materials Technologies上。

062697a2-5bfe-11ed-a3b6-dac502259ad0.png

图3. 线形脉冲激光光刻用于跨大尺度微纳复合制造

在耐久性纳米锥的激光掺杂增强等离子体刻蚀制造方面,表面纳米结构可有效减低界面处的菲涅尔反射,从而提高光学窗口的透过性,实现表面增透的应用。然而纳米锥等表面结构在受到摩擦或颗粒撞击时易发生磨损和断裂导致性能失效,这限制了其在极端环境下的应用。

研究人员巧妙地设计了一种微框架结构,对表面纳米锥阵列进行保护,使得制备的纳米锥增透表面同时具备了高抗磨损性能。结合超快激光加工与干法刻蚀技术,研究人员提出了一种区域化激光掺杂复合干法刻蚀技术,在石英玻璃、本征SiC等光学窗口表面验证了高透过率、长耐久性光学增透窗口的制造可行性。该研究提出的设计制造方法,能够有效解决增透表面的耐久性难题,有望推动极端环境下光学增透窗口的研究与应用。研究成果以“Armored Nanocones Engraved by Selective Laser Doping Enhanced Plasma Etching for Robust Supertransmissivity”为题,发表在ACS Applied Materials & Interfaces上。

06693706-5bfe-11ed-a3b6-dac502259ad0.png

图4. 耐久性纳米锥的激光掺杂增强等离子体刻蚀制造

南科大机械系徐少林课题组博士生袁丹丹、徐康、黄佳旭、黄凌羽、胡劲,硕士生赵亮、乔靖宇,分别为相应论文的第一或共同第一作者,徐少林为通讯作者,南科大为论文第一单位,徐少林课题组成员李峻等在上述论文中亦有十分重要的贡献。美国内布拉斯加林肯大学陆永枫教授,南科大物理系张文清教授,普渡大学程佳瑞教授,南科大机械系韦齐和教授,爱荷华州立大学王信伟教授,南科大材料系李贵新教授,南科大电子系刘言军副教授,南科大微电子学院王敏助理教授等也为论文的顺利发表提供了大量的珍贵意见和建议。

以上研究工作得到了深圳市科技创新委员会、深圳市圭华智能科技有限公司、华为技术有限公司、广东原点智能技术有限公司的大力支持。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    29985

    浏览量

    258360
  • 纳米
    +关注

    关注

    2

    文章

    724

    浏览量

    41534

原文标题:光刻技术 | 南科大在激光超分辨率纳米制造领域取得系列进展

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    ADC分辨率与精度的区别是什么

    简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是 用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。 很多卖传感器的JS就是利用这一点
    发表于 12-05 06:24

    电能质量在线监测装置的暂态记录分辨率如何影响故障类型识别?

    暂态记录分辨率是故障类型识别的 “细节放大镜”—— 核心通过 采样、幅值分辨率、时间分辨率 决定故障波形 “特征细节的完整性”,高分辨率
    的头像 发表于 11-14 16:10 1723次阅读
    电能质量在线监测装置的暂态记录<b class='flag-5'>分辨率</b>如何影响故障类型识别?

    上海光机所在高分辨率激光脉冲时域整形技术研究方面取得进展

    图 1. (a)FOCUS原理图;(b)频率-时间转换示意图;(c)实验装置图。 近期,中国科学院上海光学精密机械研究所高功率激光物理联合实验室分辨率激光脉冲时域任意整形技术研究方
    的头像 发表于 11-10 09:12 230次阅读
    上海光机所在高<b class='flag-5'>分辨率</b><b class='flag-5'>激光</b>脉冲时域整形技术研究方面<b class='flag-5'>取得</b>新<b class='flag-5'>进展</b>

    索尼FCB-CR8530分辨率变焦:无人机光电吊舱的“视觉增强引擎”

    无人机技术快速发展的当下,光电吊舱作为无人机的核心观测设备,其性能直接决定了任务执行的效率与精度。SONY FCB-CR8530模组凭借分辨率变焦技术与紧凑型设计,成为无人机光电吊舱领域
    的头像 发表于 10-21 14:05 194次阅读

    分辨率 vs 噪声 —— ADC的挑战

    设计者常用高分辨率 ADC 以降低最低可量测单位(LSB),提高检测精度。 比如一个 16 位 ADC 5V 范围内, LSB ≈ 76 μV ;理想情况下可以检测到微弱电信号。 问题是: 若
    的头像 发表于 06-23 07:38 1481次阅读
    <b class='flag-5'>分辨率</b> vs 噪声 —— ADC的挑战

    如何计算存储示波器的垂直分辨率

    示波器的垂直档位设置为 1V/div,且屏幕有 8 个垂直格,那么满量程电压范围就是 8V。 计算垂直分辨率(电压值)存储示波器的垂直分辨率(ΔV)可以通过以下公式计算:ΔV=2n−1VFS​​ 实际
    发表于 05-30 14:03

    精度不够?PLR3000光纤激光尺:0.2ppm误差解锁微米级制造

    光纤激光尺基于激光干涉测量原理,具有更加精确的栅距和更高的分辨率,同时其热源隔离设计,保证了更高的稳定性,同时具有安装快捷,易于准直等特点,微电子、微机械、微光学等现代
    的头像 发表于 05-23 14:20 526次阅读
    精度不够?PLR3000光纤<b class='flag-5'>激光</b>尺:0.2ppm误差解锁微米级<b class='flag-5'>制造</b>

    普源精电RIGOL推出MHO2000系列分辨率示波器

    普源精电(RIGOL)作为中国领先的电子测量仪器厂商,近日正式推出MHO2000系列分辨率示波器,这一举措不仅标志着公司示波器领域的技术突破,更彰显了其深耕高端市场的战略决心。本文
    的头像 发表于 03-31 13:24 867次阅读
    普源精电RIGOL推出MHO2000<b class='flag-5'>系列</b>高<b class='flag-5'>分辨率</b>示波器

    分辨率示波器的功能与作用:以麦科信MHO6为例

    ,高分辨率示波器现代电子测试中扮演着不可或缺的角色,麦科信MHO6系列以其卓越的技术性能和人性化设计,为科研、生产和教育等领域提供了强大的测试工具,无论是
    发表于 02-28 17:39

    芯原推出低功耗AI降噪与AI分辨率系列IP

    芯原股份今日宣布推出其最新的AI图像处理系列IP,包括提供智能降噪的AINR1000和AINR2000,以及提供先进分辨率的AISR1000和AISR2000。该系列IP为汽车、监控
    的头像 发表于 02-27 10:51 650次阅读

    ADC的24位分辨率时的有效位数是多少呢?

    专家您好:ADC的分辨率只有在理想情况下才等于有效位数,datasheet给出的只是分辨率位数而已,请问,ADC的24位分辨率时的有效位数是多少呢?
    发表于 02-08 07:07

    大视野与高分辨率难兼得,FA 镜头有何破局之法?

    电子制造、工业检测等领域,机器视觉系统里的FA镜头发挥着关键作用。大视野可提高检测效率,高分辨率能保障检测精度,然而传统光学设计和制造工艺
    的头像 发表于 01-21 16:49 1140次阅读
    大视野与高<b class='flag-5'>分辨率</b>难兼得,FA 镜头有何破局之法?

    如何提高透镜成像的分辨率

    透镜成像分辨率是指透镜系统能够分辨的最小细节的能力。提高透镜成像分辨率对于许多应用领域,如显微镜、望远镜、相机等,都是至关重要的。以下是一些提高透镜成像
    的头像 发表于 12-25 16:54 1726次阅读

    如何选择扫描电镜的分辨率

    样品的精细微观结构,像纳米级别的晶体结构、细胞的超微结构等,就需要更高的分辨率,通常要达到1-3nm甚至更高。其次是样品自身特性。对于一些结构简单、特征尺寸较大的样
    的头像 发表于 12-25 14:29 1198次阅读
    如何选择扫描电镜的<b class='flag-5'>分辨率</b>?

    基于图像光谱分辨率的苹果糖度检测

    糖度是衡量苹果品质的关键指标。高光谱成像(由于含有丰富的图谱信息糖度无损检测中有着广泛的应用前景。光谱分辨率(SSR)可通过建立映射关系从低光谱维度RGB图像获得对应高光谱维度HSI图像,
    的头像 发表于 12-09 17:08 1000次阅读
    基于图像光谱<b class='flag-5'>超</b><b class='flag-5'>分辨率</b>的苹果糖度检测