0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种新型本征安全低浓度的水合有机电解液

清新电源 来源:水系储能 作者:AESer 2022-10-26 09:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

金属锌负极资源丰富、廉价易得、理论容量高,在二次电池储能领域最近受到广泛关注。然而,其在传统水系电解液中可逆性低,存在枝晶生长、腐蚀、钝化等问题。水合有机电解液是一类新型的电解液体系,其由水合盐和有机溶剂组成,继承了水系电解液电导率高和有机电解液稳定性好的特点,有望应用于可充锌电池体系。

然而,水合有机电解液处于发展初期,水合锌盐和有机溶剂的筛选以及其组成对电解液溶剂化结构、锌负极界面化学的影响有待深入研究。 近日,河北大学张宁教授团队报道了一种新型本征安全、低浓度的水合有机电解液,其由1 m Zn(BF4)2·5.2H2O和磷酸三甲酯(TMP)组成,解决了金属锌负极枝晶生长、氢析出、腐蚀、钝化等问题,且可支持锌负极在高面容量下稳定工作,显著提升了锌电池的可逆性。

结合实验表征和理论计算模拟,揭示了锌盐的种类、浓度、有机溶剂种类等对电解液溶剂化结构、界面化学、沉积/析出行为的影响,为新型电解液设计提供了一定参考。

研究亮点

开发了一种新型低浓度1 m Zn(BF4)2·5.2H2O/TMP水合有机电解液,其具有本征阻燃性,电压窗口宽至3.0 V,离子电导率达8.67 mS cm-1。 揭示了电解液溶剂化结构对锌离子沉积/析出行为、负极界面化学组成的影响,诱导生成了富含ZnF2-Zn3(PO4)2的有机无机杂化SEI膜,显著提升了锌负极的可逆性。 该电解液可以有效抑制钒氧化物正极材料的溶解,提升了Zn//V2O5·nH2O全电池的稳定循环性。

图文导读

1. 电解液表征.

c15732f6-54bb-11ed-a3b6-dac502259ad0.png


(a-c)将1 m Zn(BF4)2溶于(a)TMP、(b)EG和(c)AN溶剂中组成的不同电解液照片及对应的点火照片。(d)室温下的挥发性测试和(e)在1 mV s-1下,1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O电解液的电化学窗口。不同浓度的Zn(BF4)2/TMP电解液的(f)拉曼光谱和(g,h)红外光谱。(i)MD模拟的快照和(j)1 m Zn(BF4)2/TMP的典型Zn2+溶剂化结构。(k)1 m Zn(BF4)2/TMP中Zn2+-O(H2O)、Zn2+-O(TMP)和Zn2+-F(BF4-)的RDF图及相应的配位数。

图2. 不同电解液中锌沉积行为和形貌的表征.

c1860b44-54bb-11ed-a3b6-dac502259ad0.png

(a)1 m Zn(BF4)2/TMP和(b)1 m ZnSO4/H2O在5mA cm−2下的原位光学锌沉积行为照片。(c)Zn(BF4)2/TMP和(d)ZnSO4/H2O中的Zn沉积示意图。(e-g)1 m Zn(BF4)2/TMP和(h-j)1 mZnSO4/H2O中沉积锌(5 mAh cm-2)的SEM图像和光学照片(插图)。

图3. 锌负极在电解液中的稳定性.

c1d78b54-54bb-11ed-a3b6-dac502259ad0.png

(a)浸泡在不同电解液中Zn电极的XRD图谱。(b)浸泡在1 m ZnSO4/H2O和(c)1 m Zn(BF4)2/TMP中的Zn电极的SEM图片。(d)Tafel曲线和(e)不同电解液中锌电沉积的计时电流曲线。(f)1 m Zn(BF4)2/TMP和(g)1 mZnSO4/H2O电解液在Zn电极上的接触角。

图4. 锌电极电化学性能测试.

c2066e42-54bb-11ed-a3b6-dac502259ad0.png

(a)Zn//Cu电池在不同电解液中的平均库伦效率测试。在1 mA cm-2,1 mAh cm-2条件下(b)Zn//Cu电池的循环稳定性和(c)对应的充放电曲线。Zn//Zn电池在不同电解液中在(d)1 mA cm−2,0.5 mAh cm−2和(e)5 mA cm−2,2.5 mAh cm−2条件下的长循环性能。(f)本工作与已报道的RZBs电解液进行比较。

图5. 循环后锌负极形貌和界面表征.

c237f2d2-54bb-11ed-a3b6-dac502259ad0.png

(a)1 m Zn(BF4)2/TMP和(b)1 m ZnSO4/H2O中循环后的Zn电极的SEM图像和(c)XRD图谱。(d)在1 m Zn(BF4)2/TMP中循环后Zn电极的C 1s、F 1s、P 2p和Zn 2p的XPS图谱。

图6. 全电池电化学性能.

c27a75e4-54bb-11ed-a3b6-dac502259ad0.png

(a)Zn//VOH电池在0.5 A g−1下的循环性能及对应的(b)1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O电解液的充放电曲线。(c)1 A g−1下的长循环性能和(d)Zn//VOH电池的倍率性能。(e)VOH正极在1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O中浸泡不同时间的光学图像。(f)大负载量下Zn//VOH的循环性能及其放电曲线。

研究结论

本文报道了一种本征安全、低浓度、水合有机电解液,该电解液由1 m Zn(BF4)2·5.2H2O和TMP阻燃溶剂构成,其可以显著提升锌金属电池的可逆性。该Zn(BF4)2/TMP电解液不仅将电化学窗口扩展至3 V(相对于Zn2+/Zn),而且在高面积容量(5和10 mAh cm−2)下,也能实现高度致密、无枝晶的锌沉积行为。

此外,在BF4-和TMP的共同参与下,形成了独特的H2O-poor 的Zn2+溶剂化壳层结构,这有利于抑制H2O分解并促进原位形成富含ZnF2-Zn3(PO4)2的SEI。在该电解液中,Zn//Cu电池循环600次后显示出99.5%的平均库伦效率(1 mA cm-1,1 mAh cm-1),Zn//Zn电池在5 mA cm-2下可稳定循环4200 h。

此外,这种新型水合有机电解液可抑制钒氧化物正极的溶解,进而构筑了长寿命的Zn//V2O5·nH2O全电池。这项工作为金属电池新型电解液设计提供了一定参考。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 充放电
    +关注

    关注

    0

    文章

    197

    浏览量

    22590
  • 电解液
    +关注

    关注

    10

    文章

    874

    浏览量

    23717
  • TMP
    TMP
    +关注

    关注

    0

    文章

    15

    浏览量

    32100
  • XPS
    XPS
    +关注

    关注

    0

    文章

    99

    浏览量

    12450

原文标题:『水系锌电』河北大学张宁团队EnSM:一种本征安全低浓度水合有机电解液用于稳定金属锌负极

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    新能源储能电解液怎么选择位传感器?

    电解液大多具有强腐蚀性、高导电性,部分还存在挥发性强、对洁净度要求高的特点,这使得位传感器选型需重点攻克 防腐蚀、防污染、适配工况精度三大核心难题。选型时需先明确电解液特性与使用场景,再从传感器类型、材质、防护性能等维度筛选
    的头像 发表于 11-24 15:17 789次阅读

    新能源储能电解液高压输送与充装系统的安全核心

    输送管路与充装设备面临泄漏、压力骤变等风险,传统位传感器易因高压变形、密封失效导致监测失灵。电容式位传感器凭借耐高压结构设计、非接触测量、抗干扰能力强等优势,成为电解液高压输送与充装系统的关键
    的头像 发表于 11-21 16:57 1810次阅读

    新能源储能电解液低温输送与保温系统的安全监测关键

    ,传统位传感器易受低温冻损、保温层干扰及粘度影响,导致监测精度下降或失效。电容式位传感器凭借耐低温设计、非接触测量、抗粘度干扰等优势,成为电解液低温输送与保温系统的核心安全监测组件
    的头像 发表于 11-20 18:10 1818次阅读

    新能源储能电解液在线再生循环的动态监测核心

    为提升新能源储能系统的经济性与环保性,电解液在线再生与循环利用技术逐渐成为行业研究热点。该技术通过在储能系统运行过程中,对性能衰减的电解液进行实时净化、成分修复与浓度调整,实现电解液
    的头像 发表于 11-20 18:07 1782次阅读

    新能源储能电解液生产制备环节的质量把控关键-非接触水位液体检测传感器

    新能源储能电解液的生产制备是保障储能系统性能的源头环节,涵盖原料配比、混合搅拌、过滤提纯、灌装封装等工序。各工序对电解液位控制精度要求极高,位偏差不仅会影响
    的头像 发表于 11-18 16:45 1301次阅读
    新能源储能<b class='flag-5'>电解液</b>生产制备环节的质量把控关键-非接触水位液体检测传感器

    退役储能电解液回收处理环节的环保监测关键-电容式位传感器

    随着新能源储能系统规模化应用,退役电解液的回收处理成为保障环境安全、实现资源循环的重要环节。退役电解液成分复杂,含有重金属离子、腐蚀性盐类及有机杂质,且不同类型储能电池(如锂电池、液流
    的头像 发表于 11-18 16:42 1183次阅读
    退役储能<b class='flag-5'>电解液</b>回收处理环节的环保监测关键-电容式<b class='flag-5'>液</b>位传感器

    合粤铝电解电容的 “长寿密码”:特制抗干涸电解液,家用设备服役 12 年 +

    ,成功破解了这行业难题,其产品在连续工作12年后仍保持90%以上容量稳定性,创造了家用设备铝电解电容的"长寿纪录"。 **电解液技术突破:从分子结构到长效稳定** 合粤研发团队发现,传统电解
    的头像 发表于 09-03 17:32 597次阅读

    冠坤电解电容的 “长寿密码”:特制抗干涸电解液,家用设备可服役 12 年 +

    在电子元器件领域,电解电容的寿命直是制约设备可靠性的关键因素。冠坤电子通过自主研发的特制抗干涸电解液技术,成功将电解电容的工作寿命提升至12年以上,这项突破性技术正在重新定义家用电器
    的头像 发表于 09-02 15:41 532次阅读

    电解电容的 “环保转身”:无汞电解液如何让它从 “电子垃圾” 变 “可回收物”?

    近年来,随着全球环保法规日益严格和电子废弃物问题日益突出,铝电解电容这电子行业的基础元件正经历着场深刻的"环保革命"。传统铝电解电容因含汞电解液
    的头像 发表于 08-19 17:04 541次阅读
    铝<b class='flag-5'>电解</b>电容的 “环保转身”:无汞<b class='flag-5'>电解液</b>如何让它从 “电子垃圾” 变 “可回收物”?

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤。然而,由于
    的头像 发表于 08-05 17:49 1835次阅读
    锂离子电池<b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    攻克锂电池研发痛点-电解液浸润量化表征

    工序改变材料微观结构,影响保能力 质控层级:缺乏量化手段评估电芯级浸润致性 善思创兴电解液浸润分析仪通过高精度称重与智能温控技术,实现从材料到电芯的全流程浸润性能量化评估。 典型应用分析&
    发表于 07-14 14:01

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液
    的头像 发表于 04-12 10:53 1046次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究

    影响,特别是在极端温度( 60 °C)下。极端工作温度下的性能衰减主要与电解液离子迁移、去溶剂化能力和电解液热稳定性有关。方面,传统碳酸酯类电
    的头像 发表于 01-21 11:01 1604次阅读
    强弱耦合型<b class='flag-5'>电解液</b>调控超级电容器宽温域特性及其机制研究

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电池(ASSLMB),SSE通常需要具备均匀且快速的锂离子
    的头像 发表于 12-31 11:21 1502次阅读
    <b class='flag-5'>一种</b>薄型层状固态<b class='flag-5'>电解</b>质的设计策略

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2659次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子电池