0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用Java层面的工具定位内存区域

倩倩 来源:芋道源码 作者:芋道源码 2022-09-20 10:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


为了更好地实现对项目的管理,我们将组内一个项目迁移到MDP框架(基于Spring Boot),随后我们就发现系统会频繁报出Swap区域使用量过高的异常。笔者被叫去帮忙查看原因,发现配置了4G堆内内存,但是实际使用的物理内存竟然高达7G,确实不正常。JVM参数配置是“-XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+AlwaysPreTouch -XX:ReservedCodeCacheSize=128m -XX:InitialCodeCacheSize=128m, -Xss512k -Xmx4g -Xms4g,-XX:+UseG1GC -XX:G1HeapRegionSize=4M”,实际使用的物理内存如下图所示:

d7002dc8-388d-11ed-ba43-dac502259ad0.jpgtop命令显示的内存情况

排查过程

1. 使用Java层面的工具定位内存区域(堆内内存、Code区域或者使用unsafe.allocateMemory和DirectByteBuffer申请的堆外内存)

笔者在项目中添加-XX:NativeMemoryTracking=detailJVM参数重启项目,使用命令jcmd pid VM.native_memory detail查看到的内存分布如下:

d734cfd8-388d-11ed-ba43-dac502259ad0.jpgjcmd显示的内存情况

发现命令显示的committed的内存小于物理内存,因为jcmd命令显示的内存包含堆内内存、Code区域、通过unsafe.allocateMemory和DirectByteBuffer申请的内存,但是不包含其他Native Code(C代码)申请的堆外内存。所以猜测是使用Native Code申请内存所导致的问题。

为了防止误判,笔者使用了pmap查看内存分布,发现大量的64M的地址;而这些地址空间不在jcmd命令所给出的地址空间里面,基本上就断定就是这些64M的内存所导致。

d79e3856-388d-11ed-ba43-dac502259ad0.jpg

pmap显示的内存情况

2、使用系统层面的工具定位堆外内存

因为笔者已经基本上确定是Native Code所引起,而Java层面的工具不便于排查此类问题,只能使用系统层面的工具去定位问题。

首先,使用了gperftools去定位问题

gperftools的使用方法可以参考gperftools,gperftools的监控如下:

d7cb1f56-388d-11ed-ba43-dac502259ad0.jpggperftools监控

从上图可以看出:使用malloc申请的的内存最高到3G之后就释放了,之后始终维持在700M-800M。笔者第一反应是:难道Native Code中没有使用malloc申请,直接使用mmap/brk申请的?(gperftools原理就使用动态链接的方式替换了操作系统默认的内存分配器(glibc)。)

然后,使用strace去追踪系统调用

因为使用gperftools没有追踪到这些内存,于是直接使用命令“strace -f -e”brk,mmap,munmap” -p pid”追踪向OS申请内存请求,但是并没有发现有可疑内存申请。strace监控如下图所示:

d7fb8a92-388d-11ed-ba43-dac502259ad0.jpg

strace监控

接着,使用GDB去dump可疑内存

因为使用strace没有追踪到可疑内存申请;于是想着看看内存中的情况。就是直接使用命令gdp -pid pid进入GDB之后,然后使用命令dump memory mem.bin startAddress endAddressdump内存,其中startAddress和endAddress可以从/proc/pid/smaps中查找。然后使用strings mem.bin查看dump的内容,如下:

d814676a-388d-11ed-ba43-dac502259ad0.jpg

gperftools监控

从内容上来看,像是解压后的JAR包信息。读取JAR包信息应该是在项目启动的时候,那么在项目启动之后使用strace作用就不是很大了。所以应该在项目启动的时候使用strace,而不是启动完成之后。

再次,项目启动时使用strace去追踪系统调用

项目启动使用strace追踪系统调用,发现确实申请了很多64M的内存空间,截图如下:

d8368c00-388d-11ed-ba43-dac502259ad0.jpgstrace监控

使用该mmap申请的地址空间在pmap对应如下:

d85ca2b4-388d-11ed-ba43-dac502259ad0.jpgstrace申请内容对应的pmap地址空间

最后,使用jstack去查看对应的线程

因为strace命令中已经显示申请内存的线程ID。直接使用命令jstack pid去查看线程栈,找到对应的线程栈(注意10进制和16进制转换)如下:

d8b179ba-388d-11ed-ba43-dac502259ad0.jpgstrace申请空间的线程栈

这里基本上就可以看出问题来了:MCC(美团统一配置中心)使用了Reflections进行扫包,底层使用了Spring Boot去加载JAR。因为解压JAR使用Inflater类,需要用到堆外内存,然后使用Btrace去追踪这个类,栈如下:

d8d5867a-388d-11ed-ba43-dac502259ad0.jpg

btrace追踪栈

然后查看使用MCC的地方,发现没有配置扫包路径,默认是扫描所有的包。于是修改代码,配置扫包路径,发布上线后内存问题解决。

3、为什么堆外内存没有释放掉呢?

虽然问题已经解决了,但是有几个疑问:

  • 为什么使用旧的框架没有问题?
  • 为什么堆外内存没有释放?
  • 为什么内存大小都是64M,JAR大小不可能这么大,而且都是一样大?
  • 为什么gperftools最终显示使用的的内存大小是700M左右,解压包真的没有使用malloc申请内存吗?

带着疑问,笔者直接看了一下Spring Boot Loader那一块的源码。发现Spring Boot对Java JDK的InflaterInputStream进行了包装并且使用了Inflater,而Inflater本身用于解压JAR包的需要用到堆外内存。而包装之后的类ZipInflaterInputStream没有释放Inflater持有的堆外内存。于是笔者以为找到了原因,立马向Spring Boot社区反馈了这个bug。但是反馈之后,笔者就发现Inflater这个对象本身实现了finalize方法,在这个方法中有调用释放堆外内存的逻辑。也就是说Spring Boot依赖于GC释放堆外内存。

笔者使用jmap查看堆内对象时,发现已经基本上没有Inflater这个对象了。于是就怀疑GC的时候,没有调用finalize。带着这样的怀疑,笔者把Inflater进行包装在Spring Boot Loader里面替换成自己包装的Inflater,在finalize进行打点监控,结果finalize方法确实被调用了。于是笔者又去看了Inflater对应的C代码,发现初始化的使用了malloc申请内存,end的时候也调用了free去释放内存。

此刻,笔者只能怀疑free的时候没有真正释放内存,便把Spring Boot包装的InflaterInputStream替换成Java JDK自带的,发现替换之后,内存问题也得以解决了。

这时,再返过来看gperftools的内存分布情况,发现使用Spring Boot时,内存使用一直在增加,突然某个点内存使用下降了好多(使用量直接由3G降为700M左右)。这个点应该就是GC引起的,内存应该释放了,但是在操作系统层面并没有看到内存变化,那是不是没有释放到操作系统,被内存分配器持有了呢?

继续探究,发现系统默认的内存分配器(glibc 2.12版本)和使用gperftools内存地址分布差别很明显,2.5G地址使用smaps发现它是属于Native Stack。内存地址分布如下:

d94771f4-388d-11ed-ba43-dac502259ad0.jpggperftools显示的内存地址分布

到此,基本上可以确定是内存分配器在捣鬼;搜索了一下glibc 64M,发现glibc从2.11开始对每个线程引入内存池(64位机器大小就是64M内存),原文如下:

daa424d4-388d-11ed-ba43-dac502259ad0.jpgglib内存池说明

按照文中所说去修改MALLOC_ARENA_MAX环境变量,发现没什么效果。查看tcmalloc(gperftools使用的内存分配器)也使用了内存池方式。

为了验证是内存池搞的鬼,笔者就简单写个不带内存池的内存分配器。使用命令gcc zjbmalloc.c -fPIC -shared -o zjbmalloc.so生成动态库,然后使用export LD_PRELOAD=zjbmalloc.so替换掉glibc的内存分配器。其中代码Demo如下:

#include
#include
#include
#include
//作者使用的64位机器,sizeof(size_t)也就是sizeof(long)
void*malloc(size_tsize)
{
long*ptr=mmap(0,size+sizeof(long),PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,0,0);
if(ptr==MAP_FAILED){
returnNULL;
}
*ptr=size;//First8bytescontainlength.
return(void*)(&ptr[1]);//Memorythatisafterlengthvariable
}

void*calloc(size_tn,size_tsize){
void*ptr=malloc(n*size);
if(ptr==NULL){
returnNULL;
}
memset(ptr,0,n*size);
returnptr;
}
void*realloc(void*ptr,size_tsize)
{
if(size==0){
free(ptr);
returnNULL;
}
if(ptr==NULL){
returnmalloc(size);
}
long*plen=(long*)ptr;
plen--;//Reachtopofmemory
longlen=*plen;
if(size<= len) {
returnptr;
}
void*rptr=malloc(size);
if(rptr==NULL){
free(ptr);
returnNULL;
}
rptr=memcpy(rptr,ptr,len);
free(ptr);
returnrptr;
}

voidfree(void*ptr)
{
if(ptr==NULL){
return;
}
long*plen=(long*)ptr;
plen--;//Reachtopofmemory
longlen=*plen;//Readlength
munmap((void*)plen,len+sizeof(long));
}

通过在自定义分配器当中埋点可以发现其实程序启动之后应用实际申请的堆外内存始终在700M-800M之间,gperftools监控显示内存使用量也是在700M-800M左右。但是从操作系统角度来看进程占用的内存差别很大(这里只是监控堆外内存)。

笔者做了一下测试,使用不同分配器进行不同程度的扫包,占用的内存如下:

dad088ee-388d-11ed-ba43-dac502259ad0.jpg内存测试对比

为什么自定义的malloc申请800M,最终占用的物理内存在1.7G呢?

因为自定义内存分配器采用的是mmap分配内存,mmap分配内存按需向上取整到整数个页,所以存在着巨大的空间浪费。通过监控发现最终申请的页面数目在536k个左右,那实际上向系统申请的内存等于512k * 4k(pagesize) = 2G。为什么这个数据大于1.7G呢?

因为操作系统采取的是延迟分配的方式,通过mmap向系统申请内存的时候,系统仅仅返回内存地址并没有分配真实的物理内存。只有在真正使用的时候,系统产生一个缺页中断,然后再分配实际的物理Page。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://gitee.com/zhijiantianya/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

总结

daec1d2a-388d-11ed-ba43-dac502259ad0.jpg流程图

整个内存分配的流程如上图所示。MCC扫包的默认配置是扫描所有的JAR包。在扫描包的时候,Spring Boot不会主动去释放堆外内存,导致在扫描阶段,堆外内存占用量一直持续飙升。当发生GC的时候,Spring Boot依赖于finalize机制去释放了堆外内存;但是glibc为了性能考虑,并没有真正把内存归返到操作系统,而是留下来放入内存池了,导致应用层以为发生了“内存泄漏”。所以修改MCC的配置路径为特定的JAR包,问题解决。笔者在发表这篇文章时,发现Spring Boot的最新版本(2.0.5.RELEASE)已经做了修改,在ZipInflaterInputStream主动释放了堆外内存不再依赖GC;所以Spring Boot升级到最新版本,这个问题也可以得到解决。


审核编辑 :李倩


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • JAVA
    +关注

    关注

    20

    文章

    2997

    浏览量

    115661
  • 追踪系统
    +关注

    关注

    0

    文章

    34

    浏览量

    9510

原文标题:唉,一次堆外内存泄露让整个团队通宵处理到爆肝!

文章出处:【微信号:芋道源码,微信公众号:芋道源码】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    医院随访管理系统源码,三级随访系统源码,Java+Springboot,Vue,Ant-Design+MySQL5

    环境 技术架构:前后端分离   开发语言:Java 开发工具:Idea , vscode    前端框架:Vue,Ant-Design    后端框架:Springboot    数 据 库
    的头像 发表于 11-08 14:48 199次阅读
    医院随访管理系统源码,三级随访系统源码,<b class='flag-5'>Java</b>+Springboot,Vue,Ant-Design+MySQL5

    Java效率提升指南:5个Java工具选型建议及Perforce JRebel和XRebel介绍

    企业级Java环境越来越复杂,真正的破局点,可能不在“人”,而在于“工具”。5个实用建议,帮你理清Java工具的选型思路。
    的头像 发表于 09-11 13:59 908次阅读
    <b class='flag-5'>Java</b>效率提升指南:5个<b class='flag-5'>Java</b><b class='flag-5'>工具</b>选型建议及Perforce JRebel和XRebel介绍

    harmony-utils之LocationUtil,定位相关工具

    harmony-utils之LocationUtil,定位相关工具类 harmony-utils 简介与说明 harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多
    的头像 发表于 07-03 18:13 390次阅读

    MEMS陀螺工具定向短节全面升级,重新定义测量标准

    在石油天然气测井、物探、定向钻孔等领域,井下轨迹测量始终面临三大挑战:磁场干扰环境下的方位精度衰减,振动工况下需停钻测量以及小井斜工况下的测量盲区。今天,ER-Gyro-15 MEMS 陀螺工具定
    的头像 发表于 07-01 14:58 1200次阅读
    MEMS陀螺<b class='flag-5'>工具定</b>向短节全面升级,重新定义测量标准

    化工园区人员定位系统选型分析

    系统:化工园区安全管理的战略支撑 1、安全生产防护网的数字化升级 危险区域智能管控机制 工业园区内存在多个高风险作业区域,传统的人工监管方式已难以满足现代安全管理需求。定位系统通过构建
    的头像 发表于 06-17 17:15 419次阅读
    化工园区人员<b class='flag-5'>定位</b>系统选型分析

    新品发布:首款原位替换磁通门传感器的MEMS陀螺工具定向短节

    可实现随钻测量或连续测量的ER-Gyro-19 MEMS陀螺工具定向短节,成为业内首款可原位替换磁通门传感器的定向解决方案。
    的头像 发表于 06-11 17:39 1046次阅读
    新品发布:首款原位替换磁通门传感器的MEMS陀螺<b class='flag-5'>工具定</b>向短节

    MEMS陀螺工具定向短节:测井领域的新型解决方案

    ER-Gyro-15 MEMS 陀螺工具定向短节的出现,有效解决了这些难题。 高精度测量与快速对准 [ER-Gyro-15]采用基于地球自转角速度感应的陀螺定向技术,不受磁场影响,在强磁场干扰的井段,也能保证方位测量的高精度。 可实现对井斜角、工具面角及
    的头像 发表于 05-13 17:30 459次阅读

    MEMS陀螺工具定向短节全新发布:石油钻井技术的革新利器

    在石油钻井行业中,精准的井下定向、井眼轨迹控制、测量技术是确保作业高效、安全开展的关键。艾瑞科专为石油测井,定向钻井打造可实现随钻测量或连续测量的MEMS陀螺工具定向短节--ER-Gyro-15正式发布。
    的头像 发表于 05-06 10:45 860次阅读
    MEMS陀螺<b class='flag-5'>工具定</b>向短节全新发布:石油钻井技术的革新利器

    滚珠螺杆的精度如何保持?

    滚珠螺杆通常用于需要精确定位的地方,高机械效率、低传递扭矩和几乎为零的轴向游隙,使滚珠螺杆成为工具定位和飞机副翼驱动等应用中的重要设备。
    的头像 发表于 05-05 17:59 428次阅读
    滚珠螺杆的精度如何保持?

    Java开发者必备的效率工具——Perforce JRebel是什么?为什么很多Java开发者在用?

    Perforce JRebel是一款Java开发效率工具,旨在帮助java开发人员更快地编写更好的应用程序。JRebel可即时重新加载对代码的修改,无需重启或重新部署应用程序,就能让开发者即时看到代码更改的效果,从而缩短开发、调
    的头像 发表于 04-27 13:44 647次阅读
    <b class='flag-5'>Java</b>开发者必备的效率<b class='flag-5'>工具</b>——Perforce JRebel是什么?为什么很多<b class='flag-5'>Java</b>开发者在用?

    内存泄漏检测工具Sanitizer介绍

    内存泄漏,我们经常会遇到,如何检测内存泄漏,除了我们之前讲过的 valgrind,还可以使用 gcc 自带的工具 sanitizer。
    的头像 发表于 03-01 14:52 1451次阅读

    HarmonyOS NEXT 原生应用/元服务-DevEco Profiler性能问题定位深度录制

    快照,分析单个内存快照或多个内存快照之间的差异,定位ArkTS的内存问题。 CPU:通过深度采集CPU内核相关数据,直观地呈现出当前选择调优应用/元服务进程的CPU使用率、CPU各核心
    发表于 02-24 16:06

    VirtualLab Fusion应用:灵活的区域定义

    ,还可以定义光波导表面的光栅区域,以执行例如耦合器的功能。为了在不限制用户的情况下涵盖上述所有内容,VirtualLab Fusion中的区域配置非常灵活,具有多个现成选项和导入功能。在这个用例中,我们
    发表于 02-24 09:47

    VirtualLab Fusion应用:光导布局设计工具

    设置的自动生成 平面波源规范 扫描场源规格 元件和光栅区域定位 光导参数 传输或反射的设计 光栅区域的参数 光栅区域的参数 偏转角设置 探测器设置 参数相关性和贡
    发表于 02-21 08:46

    如何使用DevEco Studio性能调优工具Profiler定位应用内存问题

    鸿蒙应用开发过程中,可能由于种种原因导致应用内存未被正的使用或者归还至操作系统,从而引发内存异常占用、内存泄漏等问题,最终导致应用卡顿甚至崩溃,严重影响用户体验。
    的头像 发表于 01-16 14:40 2516次阅读
    如何使用DevEco Studio性能调优<b class='flag-5'>工具</b>Profiler<b class='flag-5'>定位</b>应用<b class='flag-5'>内存</b>问题