电子发烧友网报道(文/李宁远)ToF的测距原理其实并不复杂,通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,计算探测光脉冲的飞行时间来得到目标物距离。这和机器视觉中另一种主流的传感器3D激光传感原理是类似的。区别在于,3D激光传感器是逐点扫描,而ToF相机是同时得到整幅图像的深度(距离)信息。

(基于Infineon REAL3的3D摄像头模块,pmd)
连续波VS脉冲
ToF采用的测量方法目前主流的有连续波CW和脉冲两种。不管是何种技术系统,连续波CW和脉冲都需要考虑测量距离、系统环境、精度要求、功耗和尺寸。
连续波CW采用周期调制信号进行主动发光,然后对接收到的信号进行零差解调以测量反射光的相移。目前市面上应用广泛的连续波CW技术系统都使用CMOS传感器。CMOS传感具有很高的输出数据速率,但连续波传感需要在多个调制频率下多帧处理计算深度。一旦系统在曝光较长,那么系统的整体帧率就会受到限制,模糊运动轨迹。处理上的复杂性增加可能会导致要在外部引入处理器,因此连续波CW系统并不适用于所有类型的应用。
不过换个角度想,CMOS成像器在更快的速度之外,灵活性也相对较高,能实现的功能也丰富。而且对于对精度要求不高的应用,连续波CW系统会比脉冲系统更容易实现,它并不像CCD对激光脉冲的要求那么严苛。而且不能忽视的一点是,在成像器系统中,CMOS比非CMOS的电源设计简单得多,比如CCD会要求更高的正负极电源。
到了更远距离的测量距离和更强环境光的场景应用中,脉冲技术系统优势更大,连续光CW系统在这种应用里不可避免地要提高光功率,高强度的连续光信号很难使器件不出现散热等方面的问题。脉冲技术在这种情况下优势更大是因为,脉冲技术系统能在很短的时间内发出高能光脉冲,对于室外这种环境光强烈的场景它展现出的鲁棒性更强。而且脉冲系统中的信号占空比通常比同等水平的连续波CW系统要低得多,系统的总功耗会有明显的下降。
不过脉冲系统需要对系统的时序控制极其精准,远超过连续波CW技术系统的时序控制难度,有些应用甚至要到皮秒级。脉冲系统对功率的要求也很严苛,否则无法达到足够短的脉冲宽度。
不管是CMOS还是CCD技术路线,都是基于帧的图像传感,目前也有基于事件的图像传感,分辨率不再由固定的时序源(帧时钟)控制,而是由信号在幅度域的变化来控制,并在检测到变化或运动时进行记录。目前这种图像传感也能实现很快的动态范围。
高度集成的ToF器件
光发射器和接收器构成了ToF远距离接近传感和距离感测系统的感测元件。发射器发送调制光脉冲,模拟前端测量光脉冲的往返时间。ToF传感器的高速高分辨率很大程度上依赖于其模拟前端的性能,现在ToF AFE的集成度也是越来越高。ADC、时序序列器和数字处理引擎甚至照明驱动都会完整地集成在AFE中,接下来只需要灵活定制光电二极管和发射极即可。
像TI目前在AFE上推的OPT3101就是ToF连续波CW技术的高速、高分辨率 AFE。集成了完整的深度处理管道,ADC、时序序列器和数字处理引擎都在其中。采样率能达到4kHz,能在15m的清晰范围内具有16位距离输出。AFE在1kHz时有88dB信号相位动态范围。

(连续波AFE OPT3101,TI)
ADI深度传感推的ADDI9036则是CCD TOF成像前端,包括一个模拟前端、一个时序发生器、一个激光二极管驱动、一个H驱动和一个垂直驱动,集成度也是相当的高。ADC的配置同样是12位45MHz,在45MHz频率下分辨率为174 ps。

(CCD前端ADDI9036,ADI)
行业主流的ToF厂商pmd的CMOS 3D深度传感则用了Infineon的SoC REAL3系列。REAL3以毫秒级的捕获速度实时传送深度数据,在恶劣环境条件下有极高的鲁棒性。而且其抑制背景照明(SBI)的专利技术,REAL3能抵御阳光或其他红外发射光源等外部光源,稳定性很高。
小结
目前在深度传感领域,ToF相机凭借更小的外形尺寸、更宽的动态感测范围,以及在多种环境下工作的能力,配合强大的AI算法成为首选的深度传感方法。尤其在工业以及汽车市场的应用场合,ToF解决了很多传统2D技术束手无策的问题。

(基于Infineon REAL3的3D摄像头模块,pmd)
连续波VS脉冲
ToF采用的测量方法目前主流的有连续波CW和脉冲两种。不管是何种技术系统,连续波CW和脉冲都需要考虑测量距离、系统环境、精度要求、功耗和尺寸。
连续波CW采用周期调制信号进行主动发光,然后对接收到的信号进行零差解调以测量反射光的相移。目前市面上应用广泛的连续波CW技术系统都使用CMOS传感器。CMOS传感具有很高的输出数据速率,但连续波传感需要在多个调制频率下多帧处理计算深度。一旦系统在曝光较长,那么系统的整体帧率就会受到限制,模糊运动轨迹。处理上的复杂性增加可能会导致要在外部引入处理器,因此连续波CW系统并不适用于所有类型的应用。
不过换个角度想,CMOS成像器在更快的速度之外,灵活性也相对较高,能实现的功能也丰富。而且对于对精度要求不高的应用,连续波CW系统会比脉冲系统更容易实现,它并不像CCD对激光脉冲的要求那么严苛。而且不能忽视的一点是,在成像器系统中,CMOS比非CMOS的电源设计简单得多,比如CCD会要求更高的正负极电源。
到了更远距离的测量距离和更强环境光的场景应用中,脉冲技术系统优势更大,连续光CW系统在这种应用里不可避免地要提高光功率,高强度的连续光信号很难使器件不出现散热等方面的问题。脉冲技术在这种情况下优势更大是因为,脉冲技术系统能在很短的时间内发出高能光脉冲,对于室外这种环境光强烈的场景它展现出的鲁棒性更强。而且脉冲系统中的信号占空比通常比同等水平的连续波CW系统要低得多,系统的总功耗会有明显的下降。
不过脉冲系统需要对系统的时序控制极其精准,远超过连续波CW技术系统的时序控制难度,有些应用甚至要到皮秒级。脉冲系统对功率的要求也很严苛,否则无法达到足够短的脉冲宽度。
不管是CMOS还是CCD技术路线,都是基于帧的图像传感,目前也有基于事件的图像传感,分辨率不再由固定的时序源(帧时钟)控制,而是由信号在幅度域的变化来控制,并在检测到变化或运动时进行记录。目前这种图像传感也能实现很快的动态范围。
高度集成的ToF器件
光发射器和接收器构成了ToF远距离接近传感和距离感测系统的感测元件。发射器发送调制光脉冲,模拟前端测量光脉冲的往返时间。ToF传感器的高速高分辨率很大程度上依赖于其模拟前端的性能,现在ToF AFE的集成度也是越来越高。ADC、时序序列器和数字处理引擎甚至照明驱动都会完整地集成在AFE中,接下来只需要灵活定制光电二极管和发射极即可。
像TI目前在AFE上推的OPT3101就是ToF连续波CW技术的高速、高分辨率 AFE。集成了完整的深度处理管道,ADC、时序序列器和数字处理引擎都在其中。采样率能达到4kHz,能在15m的清晰范围内具有16位距离输出。AFE在1kHz时有88dB信号相位动态范围。

(连续波AFE OPT3101,TI)
ADI深度传感推的ADDI9036则是CCD TOF成像前端,包括一个模拟前端、一个时序发生器、一个激光二极管驱动、一个H驱动和一个垂直驱动,集成度也是相当的高。ADC的配置同样是12位45MHz,在45MHz频率下分辨率为174 ps。

(CCD前端ADDI9036,ADI)
行业主流的ToF厂商pmd的CMOS 3D深度传感则用了Infineon的SoC REAL3系列。REAL3以毫秒级的捕获速度实时传送深度数据,在恶劣环境条件下有极高的鲁棒性。而且其抑制背景照明(SBI)的专利技术,REAL3能抵御阳光或其他红外发射光源等外部光源,稳定性很高。
小结
目前在深度传感领域,ToF相机凭借更小的外形尺寸、更宽的动态感测范围,以及在多种环境下工作的能力,配合强大的AI算法成为首选的深度传感方法。尤其在工业以及汽车市场的应用场合,ToF解决了很多传统2D技术束手无策的问题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
感测元件
+关注
关注
1文章
10浏览量
7658 -
tof传感器
+关注
关注
2文章
111浏览量
15371
发布评论请先 登录
相关推荐
热点推荐
力芯微LCD驱动IC:高集成度“芯”优势让显示更简单
,为这一问题提供了完美的解决方案。力芯微代理商南山电子就给大家详细介绍一下LCD驱动IC。高集成度,小芯片、大智慧力芯微的LCD驱动IC在设计上追求极致的高
新品 | Unit C6L,高集成度 LoRa 通信单元
UnitC6L是一款高集成度LoRa通信单元,内部嵌入StampC6LoRa模组(采用ESP32-C6作为核心主控,集成SX1262LoRa收发器与射频开关电路),支持868~923MHz工作频段
TPSM560R6:高集成度60V输入电源模块,为工业应用提供紧凑高效的电源解决方案
Texas Instruments TPSM560R6电源模块是一款高集成度600mA电源解决方案,将60V输入、降压DC/DC转换器和功率MOSFET、屏蔽电感器和被动元件结合在一个热增强型QFN封装中。
德州仪器AMC7924:高集成度模拟监控与控制解决方案
实现。此外,器件还包含带有可编程阈值检测器、温度传感器和内部基准的多路复用12位模数转换器 (ADC)。AMC7924的高集成度可显著减少组件数量并简化闭环系统设计, AMC7924的高
高集成度三相FOC预驱驱动芯片ZH63582介绍
ZH63582 是一款工作电压7V~32V、最高耐压40V的高集成度三相FOC预驱驱动芯片。集成了FOC控制算法,DCDC或LDO自供电,上管PMOS下管NMOS驱动,以及检测信号处理电路。
高集成度超低噪声电源设计方案
在射频(RF)技术、计量学等诸多领域的应用场景中,都需要极低噪声的电源电压。本文将阐释并对比传统设计方法与一种创新的高集成度设计方案,致力于为敏感的负载提供超低噪声电源。新技术不仅带来了更紧凑的设计,使用起来也更加便捷。
OB2007昂宝高性能、高集成度的二次侧同步整流控制器
OB2007是一款高性能、高集成度的二次侧同步整流控制器,用于开关供电系统的二次侧整流。它驱动一个极低压降的n沟道MOSFET来模拟反激变换器二次侧的传统二极管整流器,从而减少了散热,提高了输出电流
发表于 06-25 15:21
•0次下载
DD3118 高集成度读卡器控制芯片数据手册
DD3118是一款采用40纳米低功耗技术制造的高性能、高集成度读卡器控制芯 片,专为读卡器设计。作为读卡器的核心功能模块,DD3118支持USB 3.0、SD 3.0和eMMC 4.5标准协议,能够稳定访问存储在内存卡中的数据,并实现数据传 输功能
发表于 06-16 16:14
•7次下载
迈巨推出高集成度锂电池安全管理芯片AMG8816
迈巨微电子隆重推出新产品: AMG8816 ,该产品是一款专为 3-16 串锂电池包设计的高集成度智能电池管理(BMS)主控芯片,以高集成度、多层级的全面保护机制、高精度数据采集、灵活
发表于 02-24 17:00
•1200次阅读
防雷器 高集成度一体式:2~8线制设计,全面保护信号、电源与传感器设备
防雷器 高集成度一体式:2~8线制设计,全面保护信号、电源与传感器设备 高集成度一体式2~8线制防雷器/浪涌保护器,专为信号、电源、网线及

高集成度感测元件助力下的连续波与脉冲ToF深度传感
评论