0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

由量子组成的概率世界怎么变成确定性的经典世界

中科院半导体所 来源:万象经验 作者:Eugene Wang 2022-07-26 16:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

如果我们知道某一时刻篮球的位置和运动,以及作用在它身上的所有力,我们就可以从经典的运动定律中推断出它之后的确切位置。但是量子力学不允许我们对粒子这样做,它告诉我们的只是粒子稍后可能在哪里,我们在那里找到它的概率是多少。那么,未来不确定的量子力学的世界是如何变成我们所经历的可预测的经典世界?事实上,自从20世纪初量子力学发明以来,研究人员就一直在争论这个问题。

叠加

首先,让我解释一下量子世界是不确定的。现在想象一个量子粒子,如果我们观察它,我们可能会以50:50的概率发现它自旋向上或自旋向下。我们可能会认为,在观察它之前,粒子早就是其中的一种状态了,只是我们观察之后才会发现它是哪种状态。但事实并非如此,量子力学认为,在我们观察和测量之前,自旋不处于任何一个方向,测量行为本身才迫使宇宙做出选择。

6d68bebe-05b8-11ed-ba43-dac502259ad0.jpg

如果经典世界也是这样的,那么一个孕妇肚子内的宝宝,就好像既不是男性也不是女性,直到医生用超声波进行检查才突然变成其中一种性别。这对孩子来说听起来好像很荒谬,但这正是量子世界中粒子发生的事情,粒子在测量之前处于所谓的叠加态。

所有表征基本粒子特性的变量,比如它的位置和动量,都被编码在称为波函数的数学表达式中。粒子没有被测量,波函数只是粒子所在状态的所有波函数的总和,这就是叠加。波函数本身没有直观的意义,但波函数的平方为我们提供了在任何给定位置找到这个量子物体的概率。

从概率到确定

所以现在你可能会问:如果我们在测量时只能看到这些变量的一个值,我们怎么知道它真的处于叠加态呢?我们之所以知道这一点,是因为即使无法直接观察到那些叠加状态,我们也能通过间接证据知道它们互相干涉。例如,在著名的双缝实验中,即使一次发射一个电子,我们也能在屏幕看到干涉图案。就好像它们中的每一个都同时穿过两个狭缝并干涉自己,只要我们不尝试知道这些粒子“实际上”在哪里,或者它“实际上”是什么状态,这些叠加以及它们引起的干涉就会永远存在。但如果我们这样做了,这些量子效应就会消失,粒子就会变成经典物体。

6d7c286e-05b8-11ed-ba43-dac502259ad0.jpg

这是真正的问题:量子理论并没有告诉我们从概率到确定性的转变是如何发生的,量子力学所能做的就是在我们进行测量之前描述粒子。根据量子力学,粒子的波函数不可能突然从50:50的概率变成100%的确定性。这种开关没有理论依据,所以量子物理学家不得不手动添加作为量子力学本身的额外内容:坍缩,最早由物理学家约翰·冯·诺依曼提出。在过去的几十年里,量子研究人员已经意识到,要理解我们称之为波函数坍缩的东西,我们真正需要做的是更仔细地思考测量中发生的事情。

退相干

无论我们测量什么量子物体,我们需要一些方法让它与环境中的原子相互作用,尤其是我们大型测量设备中的原子。根据量子力学,这意味着粒子所处的量子态与环境中原子的状态纠缠在一起。如果粒子处于叠加态,那么这种叠加就会通过纠缠过程传播到与之相互作用的原子。粒子与其环境的相互作用越多,纠缠的原子就越多,叠加传播得越远。它仍然是一个量子系统,它仍然处于叠加状态,但在如此庞大的粒子群中,越来越难看到原始粒子的叠加量子态之间的任何同步。就像一群荡秋千的孩子,他们可能开始时同步来回移动,但逐渐失去了这种同步,这被称为退相干。

6d8b141e-05b8-11ed-ba43-dac502259ad0.jpg

如果想看最初的叠加,则必须查看所有那些纠缠原子的量子行为才能获得全貌。但这很快就变得不可能了,这就像试图追踪漂浮的尘埃颗粒对空气中所有原子的影响。因此,随着纠缠的蔓延,它不可避免地会导致更多的退相干。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子
    +关注

    关注

    0

    文章

    497

    浏览量

    26351
  • 量子力学
    +关注

    关注

    8

    文章

    101

    浏览量

    21914
  • 变量
    +关注

    关注

    0

    文章

    615

    浏览量

    29371

原文标题:由量子组成的概率世界怎么变成确定性的经典世界

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    天合储能Elementa 2 Pro赋能北美储能项目确定性价值

    近日,天合储能携手全球权威媒体PV Tech与Energy-Storage News联合举办的网络专题研讨会顺利举行。天合储能北美产品负责人 Mike Watson 围绕“赋能储能项目确定性价值
    的头像 发表于 11-28 11:03 204次阅读

    案例分享| PPLN驱动的宽带量子合成器:实现超快压缩光脉冲源的关键突破

    量子技术是英国和加拿大工业战略的重要组成部分,有望彻底改变数字世界,扩展当前成像设备的能力,并利用量子计算解决复杂计算难题以促进新药研发。宽带量子
    的头像 发表于 11-27 17:11 964次阅读
    案例分享| PPLN驱动的宽带<b class='flag-5'>量子</b>合成器:实现超快压缩光脉冲源的关键突破

    网络接口:数字世界的“门铃”,你了解多少?

    DNS服务器则像是“电话簿”,负责把域名转换为IP地址。 前沿发展 随着技术发展,网络接口技术也在不断进步。例如,宁波电信近期完成了OSU与50G PON的协同商用,构建了1ms以内的确定性时延通道
    发表于 11-26 18:53

    涡轮部件多源不确定性机理与分类体系研究:从几何变异到认知局限的系统解析

    涡轮部件作为航空发动机和燃气轮机的核心组成部分,其性能直接决定了整个动力系统的效率、可靠性与寿命。在实际运行环境中,涡轮部件的气动与换热性能往往与设计预期存在显著差异,这种差异主要源于全寿命周期中存在的多源不确定性因素。
    的头像 发表于 11-12 14:29 315次阅读
    涡轮部件多源不<b class='flag-5'>确定性</b>机理与分类体系研究:从几何变异到认知局限的系统解析

    【干货】必看!一文搞懂时间敏感网络(TSN):解决工业网络延迟/抖动痛点的确定性网络技术

    什么是TSN?时钟敏感网络(Time-SensitiveNetworking)是标准以太网的扩展,其主要目标是使标准以太网具有确定性。使技术人员能够精确了解流量在网络中传输所需的确切时间,以及流量将
    的头像 发表于 10-30 19:33 1035次阅读
    【干货】必看!一文搞懂时间敏感网络(TSN):解决工业网络延迟/抖动痛点的<b class='flag-5'>确定性</b>网络技术

    寻迹智行AMR融合RFID识别技术,为柔性搬运注入“确定性&quot;

    在智能物流与制造业不断追求高效与柔性的今天,自主移动机器人(AMR)已成为革新场内物流的核心力量。其“柔性”特质——灵活部署、智能调度、自主避障——完美应对了现代生产中的不确定性
    的头像 发表于 10-27 14:34 132次阅读
    寻迹智行AMR融合RFID识别技术,为柔性搬运注入“<b class='flag-5'>确定性</b>&quot;

    从微秒级响应到确定性延迟:深入解析米尔全志T536核心板的实时性技术突破

    延迟、调度器抖动...这些因素导致Linux的延迟通常在几十毫秒级别波动,根本无法满足工业场景对确定性的苛刻要求。 一、工业实时性挑战:从理论到实践的鸿沟1.1 实时性的分级标准在工业领域,我们
    发表于 10-22 17:25

    虹科干货 | 拆解TSN四大支柱:从「尽力而为」到工业实践的确定性网络

    ,基于CSMA/CD机制的传统以太网暴露出致命缺陷——不确定性的延迟和抖动。正是在这样的背景下,时间敏感网络(TSN)应运而生。*不想逐字读长文?点击收听本文播客TSN并非全
    的头像 发表于 08-27 17:33 1407次阅读
    虹科干货 | 拆解TSN四大支柱:从「尽力而为」到工业实践的<b class='flag-5'>确定性</b>网络

    康谋分享 | 基于多传感器数据的自动驾驶仿真确定性验证

    自动驾驶仿真测试中,游戏引擎的底层架构可能会带来非确定性的问题,侵蚀测试可信度。如何通过专业仿真平台,在多传感器配置与极端天气场景中实现测试数据零差异?确定性验证方案已成为自动驾驶研发的关键突破口!
    的头像 发表于 07-02 13:17 3990次阅读
    康谋分享 | 基于多传感器数据的自动驾驶仿真<b class='flag-5'>确定性</b>验证

    应用分享 | 精准生成和时序控制!AWG在确定性量子比特纠缠光子源中的应用

    丹麦哥本哈根大学最新研究利用任意波形发生器(AWG),成功构建保真度56%的确定性量子比特GHZ态!AWG凭借精准的信号生成和时序控制能力,充分展现了其在量子态操控中的强大能力。
    的头像 发表于 06-06 14:06 967次阅读
    应用分享 | 精准生成和时序控制!AWG在<b class='flag-5'>确定性</b>三<b class='flag-5'>量子</b>比特纠缠光子源中的应用

    基于玻色量子相干光量子计算机的混合量子经典计算架构

    近日,北京玻色量子科技有限公司(以下简称“玻色量子”)与北京师范大学、中国移动研究院组成的联合研究团队提出一种基于相干光量子计算机的混合量子
    的头像 发表于 03-10 15:43 938次阅读
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b>计算机的混合<b class='flag-5'>量子</b><b class='flag-5'>经典</b>计算架构

    优刻得:与DeepSeek模型适配,业绩贡献存不确定性

    全系列模型的适配工作。然而,目前相关业务的效果以及对公司未来业绩的具体贡献仍存在重大不确定性。 同时,经公司核实,截至公告披露日,优刻得并未直接或间接持有杭州深度求索人工智能基础技术研究有限公司的股权。这意味着,尽管双方已展开合作
    的头像 发表于 02-07 10:37 997次阅读

    NVIDIA Cosmos世界基础模型平台发布

    NVIDIA 宣布推出NVIDIA Cosmos,该平台先进的生成式世界基础模型、高级 tokenizer、护栏和加速视频处理管线组成,将推动自动驾驶汽车(AV)和机器人等物理 AI 系统的发展。
    的头像 发表于 01-08 10:39 1032次阅读

    AFE5808A串并变换之后数据错位,输出结果具有不确定性,为什么?

    AFE5808A串并变换之后数据错位,输出结果具有不确定性,求问可能的原因有哪些?
    发表于 01-01 07:23

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠效应进行信息传递的新型通信方式。它基于
    的头像 发表于 12-19 15:53 2142次阅读