0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

IGBT模块在高湿环境应用失效的预防措施

赛米控电力电子 来源:赛米控电力电子 作者:赛米控电力电子 2022-07-08 14:47 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

IGBT模块在高湿环境应用失效的预防措施

引言

近年来,随着我国政府对环境和气候问题的持续关注,可再生能源得到了高速发展。综合各省市数据,十四五期间光伏和风电的规划新增装机容量超过527GW[1]。随着累计装机量的快速增加,北方地区可利用的优质可再生能源资源逐步减少。新增光伏和风电装机正向南方甚至是海上发展,面临着高温高湿等恶劣应用环境的挑战。IGBT模块作为光伏逆变器和风电变流器的“心脏”,需要在各种复杂工况下可靠工作20年。由于水分子的导电性和腐蚀性,高湿环境对功率半导体器件的长期可靠运行有着非常大的负面影响。根据过去大量不同应用的现场IGBT失效信息统计分析,发现在其他外部条件类似时,雨季的失效率明显突出。所以当使用IGBT的设备需要长期工作在高湿环境中,在设计阶段就考虑足够的失效预防措施是必要的。

那么什么样的环境算是高湿,高湿环境又是如何影响IGBT的可靠性?我们先来共同回顾一些基本概念。

绝对湿度,相对湿度,凝露

绝对湿度也就是单位空气中所含水蒸汽的质量,它是大气干湿程度的一种物理表达方式,通常用1立方米内空气中所含有的水蒸气的质量来表示。绝对湿度不容易直接测量,实际使用比较少。相对湿度,指空气中水汽压与相同温度下饱和水汽压的百分比。或湿空气的绝对湿度与相同温度下可能达到的最大绝对湿度之比。相对湿度越大,说明水汽越接近饱和。RH=100%时,水汽达到饱和。需要注意,绝对湿度和相对湿度并非一成不变,而是都会受到气压和温度的影响而产生变化。如图1所示。气压越低,温度越高,绝对湿度和相对湿度就越低。

cd8e70e0-fdde-11ec-ba43-dac502259ad0.png

图1:密闭系统中湿度与温度、气压关系

当空气中的水蒸气从气态转变为液态,会在物体表面形成凝露或是在低温状态下以水雾形式存在。产生凝露时物体表面的温度称为露点温度。下图2展示了相对湿度,空气温度和露点三者之间的关系。在一定的气压和湿度条件下,如果局部的空气或物体表面温度低于露点温度,冷凝就会在该区域发生。

cda4bfda-fdde-11ec-ba43-dac502259ad0.png

图2:基于马格纳斯方程的露点温度表

假设空气温度为20℃,相对湿度为60%,那么物体表面温度低于12℃时,就可能出现凝露,空气温度与露点温度相差8℃。

若空气温度为30℃,相对湿度为90%,那么物体表面温度低于28℃时,就有结露的风险。空气温度与露点温度相差只有2℃。

可以看出,在相对湿度高的环境中更容易出现凝露的现象。

IGBT模块满足的气候标准

赛米控出品的大部分IGBT模块满足IEC60721-3-3标准中的3K3气候等级。在温度和气压范围之外,3K3气候等级标定了5%-85%的相对湿度范围,不容许冷凝的形成。而且,3K3也对绝对湿度规定了最高25g/m3的限定值。

IEC60721-3-3标准使用了气候图表来定义允许的温度和湿度范围。虽然3K3等级允许的温度范围只是从5℃-45℃(如图3中红线范围所示),大部分赛米控产品可以应用在更宽泛的温度范围(参见图3蓝线)。因此,赛米控产品数据手册中对于气候等级的描述会是“调整过的3K3”或是“温度范围拓展的3K3”。

cdc22cf0-fdde-11ec-ba43-dac502259ad0.png

图4:IEC60721-3-3 3K3对应温度图表

从图4的温度图表我们可以观察到,气候等级的设计初衷是避免高空气温度和高相对湿度同时出现。IGBT模块在认证过程中必须要通过高温/高湿反偏测试(H3TRB),但是在实际应用中这样的环境条件对IGBT来说会造成非常大的应力,应该尽量避免。

高湿度是如何影响IGBT可靠性的?

现代的工业IGBT模块都会有个塑料外壳提供一定的机械防护。在壳体内部灌注有透明的软硅胶包裹住IGBT及二极管芯片来实现导体间的绝缘防护。需要注意的是,这样设计的IGBT模块并不具有气密性。外部的气体仍然可以通过功率端子及辅助端子与壳体的空隙进入模块内部。

在潮湿环境中水分子会像之前介绍的一样慢慢渗透进硅胶并产生如下效应:

1.降低阻断电压:硅胶中的水分子会聚集到模块内部温度相对更低的区域,如DCB,端子或是IGBT芯片表面。而在带电的芯片表面,水分子会在电场中随机排布(见图5)。这会导致半导体芯片边缘终端电场分布不均,从而导致阻断能力下降。

2.导致半导体腐蚀:在水分子和电压的持续作用下,芯片边缘钝化层会发生电化学腐蚀直至击穿失效。腐蚀效应是一种相对缓慢且长期的过程。

cdf68a36-fdde-11ec-ba43-dac502259ad0.png

图5:水分子在模块内部聚集在芯片表面

遗憾的是,如果应用保护电路动作不够及时,由于绝缘降低或电压击穿后IGBT经常会损毁非常严重,湿气进入模块内部造成的失效很难找到直接证据。

赛米控的每一款模块在发布之前都会经过各种严苛的可靠性认证测试。其中与湿度相关的是H3TRB测试,即高湿高温反偏压测试,它是验证半导体模块在高温高湿环境下长期稳定性的可靠性测试之一。上文我们介绍过,环境湿度会侵入模块外壳、穿过硅胶到达芯片表面和钝化层。这项测试可以模拟模块在这种高湿度环境下的运行情况,检测出芯片钝化层的薄弱环节。根据IEC60068-2-67标准,模块样品在规定的温度85℃、相对湿度85%的条件下测试1000小时。测试电压为阻断电压的80%,但限制在80V。限制电压是为了避免测试中的模块自发热从而导致相对湿度的降低。

近年来,为了更加贴近实际应用工况,一些IGBT模块供应商在H3TRB测试基础上将反偏电压提高到阻断电压的80%,但不设上限电压,即HV-H3TRB(高压高湿高温反偏测试)。

模块对潮湿环境耐受能力取决于芯片设计、模块封装技术和模块的制造工艺。从图6,图7所示的湿度可靠性试验的结果可以看出,大多数模块失效位置是在芯片边缘钝化层,与前文分析一致。

ce250a5a-fdde-11ec-ba43-dac502259ad0.png

图6a:HV-H3TRB测试IGBT失效案例

ce553fe0-fdde-11ec-ba43-dac502259ad0.png

图6b:HV-H3TRB测试二极管失效

为了提高IGBT模块在潮湿环境中的耐用性和可靠性,各家主流供应商也在持续改进芯片工艺设计。如图7,8所示,英飞凌新的第四代IGBT芯片边缘终端就采用了八场板的设计。对比之前四场板设计,场板数量上的增加可以使芯片边缘电场更均匀的分布,从而可以有效防范水分子聚集而造成的电场不均。

ce991b66-fdde-11ec-ba43-dac502259ad0.png

图7:IGBT4芯片边缘终端,四场板设计

cece2fcc-fdde-11ec-ba43-dac502259ad0.png

图8:增强型IGBT4芯片边缘终端,八场板设计

赛米控IGBT模块中的反并联二极管使用的是独有专利技术的CAL(Controlled Axial Lifetime)二极管。近期赛米控也将二极管芯片边沿与第一道场环之间的距离增大。新设计改变了该区域的电场分布,使得水分子电解的可能性降低,从而降低了边缘终端腐蚀的风险。

ceff5c64-fdde-11ec-ba43-dac502259ad0.png

图9:CAL二极管芯片边缘终端增强设计

尽管IGBT厂商做了持续改进以提高产品在高湿环境中的鲁棒性,但可再生能源设备在现场应用中实际遇到的潮湿程度和持续时间很难量化。如果用户端可以通过合理设计来降低IGBT模块失效风险,提升系统整体可靠性,又何乐而不为呢!

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模块
    +关注

    关注

    7

    文章

    2822

    浏览量

    52797
  • IGBT
    +关注

    关注

    1286

    文章

    4260

    浏览量

    260466

原文标题:IGBT模块在高湿环境应用失效的预防措施(上篇)

文章出处:【微信号:SEMIKRON-power,微信公众号:赛米控电力电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    频谱芯片常见故障和预防措施

    频谱芯片的常见故障主要包括射频前端故障、中频处理故障、基带处理故障和数字信号处理故障等。为了预防这些故障,可以采取以下措施: 1、合理设计和选择射频前端和中频处理模块,确保其性能和可靠性。 2
    发表于 12-05 07:15

    如何预防射频模块的性能下降?

    预防射频模块(用于干扰发生类仪器,如射频信号发生器)性能下降,需围绕其核心失效诱因(散热不良、环境侵蚀、操作不当、部件老化、负载异常),从 “环境
    的头像 发表于 10-18 10:46 535次阅读

    怎样预防电源供给模块的故障?

    “提前规避诱因、定期排查隐患、强化保护机制”,最大限度降低故障概率(目标是将年故障率控制 5% 以内)。以下是具体可落地的预防措施,按 “核心环节” 分类拆解: 一、源头预防:精准选型,匹配工况需求(避免 “先天不足”) 电
    的头像 发表于 09-24 15:16 445次阅读
    怎样<b class='flag-5'>预防</b>电源供给<b class='flag-5'>模块</b>的故障?

    常见的电能质量在线监测装置硬件故障如何预防

    ”,从源头降低故障风险。以下是具体可落地的预防措施,对应常见故障类型逐一拆解: 一、选型阶段:从源头规避 “先天缺陷” 硬件故障的根源常与 “选型不当” 相关(如抗环境能力不足、参数不匹配),需选型时重点关注以下要点,避
    的头像 发表于 09-19 17:30 588次阅读
    常见的电能质量在线监测装置硬件故障如何<b class='flag-5'>预防</b>?

    风华贴片电感的失效模式有哪些?如何预防

    ,系统分析风华贴片电感的典型失效模式,并提出针对性预防措施。 ​一、典型失效模式分析 1.  磁路破损类失效 磁路破损是贴片电感的核心失效
    的头像 发表于 08-27 16:38 547次阅读

    LED封装失效?看看八大原因及措施

    LED技术因其高效率和长寿命在现代照明领域扮演着关键角色。然而,LED封装的失效问题可能影响其性能,甚至导致整个照明系统的故障。以下是一些常见的问题原因及其预防措施:1.固晶胶老化和芯片脱落:LED
    的头像 发表于 07-29 15:31 372次阅读
    LED封装<b class='flag-5'>失效</b>?看看八大原因及<b class='flag-5'>措施</b>

    电解电容失效因素解析与预防策略

    电解电容作为电子电路中关键的储能与滤波元件,其可靠性直接影响设备性能与寿命。然而,受材料、工艺、环境等因素影响,电解电容易发生多种失效模式。本文将系统梳理其失效因素,并提出针对性预防措施
    的头像 发表于 07-08 15:17 702次阅读
    电解电容<b class='flag-5'>失效</b>因素解析与<b class='flag-5'>预防</b>策略

    部分外资厂商IGBT模块失效报告作假对中国功率模块市场的深远影响

    部分IGBT模块厂商失效报告作假的根本原因及其对中国功率模块市场的深远影响,可以从技术、商业、行业竞争等多维度分析,并结合中国功率模块市场的
    的头像 发表于 05-23 08:37 712次阅读
    部分外资厂商<b class='flag-5'>IGBT</b><b class='flag-5'>模块</b><b class='flag-5'>失效</b>报告作假对中国功率<b class='flag-5'>模块</b>市场的深远影响

    PCB分层爆板的成因和预防措施

    电子设备中,高性能印刷电路板(PCB)就如同精密的 “千层蛋糕”,然而,当出现层间黏合失效,也就是 “分层爆板” 问题时,轻则导致信号失真,重则使整板报废。接下来,SGS带您深入了解分层爆板的成因、检测技术以及预防措施
    的头像 发表于 05-17 13:53 2247次阅读

    SMT贴片加工元件位移全解析:原因、影响与预防措施

    能。元件位移不仅会导致焊点的虚焊或短路,还可能引发产品不良率上升,影响生产效率和客户满意度。因此,了解元件位移的原因并采取相应的处理和预防措施对于确保产品质量至关重要。本文将详细探讨SMT贴片加工中元件位移的原因,并提供相应的处理方法
    的头像 发表于 03-12 09:21 969次阅读

    雪崩失效和过压击穿哪个先发生

    电子与电气工程领域,雪崩失效与过压击穿是两种常见的器件失效模式,它们对电路的稳定性和可靠性构成了严重威胁。尽管这两种失效模式本质上是不同
    的头像 发表于 01-30 15:53 1169次阅读

    压力传感器故障检测与预防措施

    旨在深入探讨压力传感器的故障检测方法及预防措施,以期为相关领域的技术人员提供有价值的参考。 一、压力传感器的工作原理 压力传感器的工作原理基于多种物理效应,如电阻应变效应、压阻效应等。其核心部件通常包括一个
    的头像 发表于 01-06 15:53 1858次阅读
    压力传感器故障检测与<b class='flag-5'>预防措施</b>

    其利天下技术·常见的器件故障及预防措施

    电子电路设计和使用中,某些元器件因其特性或工作环境的原因,比较容易引发故障。了解这些元器件的易故障原因,并采取相应的预防措施,可以有效减少故障的发生。以下是常见易引发故障的元器件及其故障原因和
    的头像 发表于 12-26 15:57 1588次阅读
    其利天下技术·常见的器件故障及<b class='flag-5'>预防措施</b>

    真空回流焊炉/真空焊接炉——IGBT失效分析

    对于IGBT来说,无法简单直观地判断实时的损耗程度,因此需要提前预测使用寿命,了解失效原因并加以预防
    的头像 发表于 12-23 10:57 1953次阅读
    真空回流焊炉/真空焊接炉——<b class='flag-5'>IGBT</b><b class='flag-5'>失效</b>分析

    六氟化硫断路器常见故障及预防措施

    。找出六氟化硫气体泄漏的原因,制定相应的措施,减少六氟化硫气体泄漏是一个重要的课题。 六氟化硫断路器故障预防措施 加强六氟化硫气体中水分的控制。首先,控制六氟化硫断路器中气体的含水量。新气体装填前
    发表于 12-17 09:44