0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用机器学习识别加密项目风险

姚小熊27 来源:今日头条 作者:今日头条 2021-01-22 10:18 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

加密货币是一种存在于数字世界的交易媒介(另一种支付形式),依靠加密技术使交易安全。加密货币背后的技术允许用户直接向他人发送货币,而不需要通过第三方,如银行。为了进行这些交易,用户需要设置一个数字钱包,而不需要提供身份证号码或信用评分等个人细节,因此可以让用户伪匿名。

对于普通的加密货币用户来说,这种匿名性可以让他们放心,因为他们的个人信息或交易数据不会被黑客窃取。然而,这种交易匿名性的提高,也容易被犯罪分子滥用,进行洗钱、恐怖融资等非法活动。这种非法活动给区块链钱包用户以及加密货币实体都造成了巨大的损失。虽然金融行动特别工作组(FATF)等监管机构已经在这些实体的监管中引入了标准化的指导方针,但由于每天都有大量的加密货币实体和交易发生,监控加密货币空间是一项具有挑战性的任务。

解决方案

因此,人们有兴趣利用开源信息,例如新闻网站或社交媒体平台,来识别可能的安全漏洞或非法活动。在与Lynx Analytics的合作中,我们(来自新加坡国立大学的一个学生团队)已经致力于开发一个自动工具,以刮取开源信息,预测每篇新闻文章的风险分数,并标记出风险文章。这个工具将被整合到Cylynx平台(https://www.cylynx.io/)中,这是Lynx Analytics开发的一个工具,用于帮助监管机构通过使用各种信息源监控区块链活动。

开源信息的数据获取

我们确定了3类开源数据,这些数据可以提供有价值的信息,帮助检测加密货币领域的可疑活动。这些类别是:

传统的新闻网站,如谷歌新闻,它将报告重大的黑客事件。

加密货币专用新闻网站,如Cryptonews和Cointelegraph,它们更有可能报道小型实体和小型安全事件的新闻。

社交媒体网站,如Twitter和Reddit,在官方发布黑客新闻之前,加密货币所有者可能会在那里发布有关黑客的消息。

检索文章和社交媒体帖子的内容,然后建立情绪分析模型。该模型为文章中提到的实体分配了一个风险活动的概率。

情绪分析模型

我们尝试了四种不同的自然语言处理工具进行情绪分析,即VADER、Word2Vec、fastText和BERT模型。在通过选定的关键指标(召回率、精度和F1)对这些模型进行评估后,RoBERTa模型(BERT的一个变种)表现最佳,被选为最终模型。

RoBERTa模型对新闻文章(标题和摘录)或社交媒体帖子的文本进行处理,并为特定文本分配一个风险分数。由于该文本在数据收集过程中已经被标记为实体,我们现在已经有了加密实体的相关风险指标。在后期,我们将多个文本的风险分数结合起来,给出一个实体的整体风险分数。

RoBERTa原本是一个使用神经网络结构建立的情感分析模型,我们将最后一层与我们标注的风险分数进行映射,以适应风险评分的环境。为了提高模型在未来文本数据上的通用性,我们进行了几种文本处理方法,即替换实体、删除url和替换hash。然后我们使用这个表现最好的模型进行风险评分。

风险评分

现在,每篇文章都有一个相关的来源(news/reddit/twitter),一个风险概率和一个计数,指的是文章被转发、分享或转发的次数。为了将这些风险概率转换为加密货币实体的单一风险得分,我们首先将文章的概率值缩放到0到100的范围内,并获得每个来源的加权平均值,结合文章的风险得分和计数。加权平均数用于对计数较高的文章给予更大的重视,因为份额数量很可能表明文章的相关性或重要性。

在计算出各来源的风险得分后,我们对各来源的风险得分进行加权求和,得到综合得分,公式如下:

传统的新闻来源被赋予了更高的权重,因为这些来源更有可能报道重大的安全漏洞(相对于单个用户的黑客事件)。

该解决方案的有效性

我们在2020年1月1日至2020年10月30日的174个加密货币实体的名单上测试了我们的解决方案,并将结果与该时间段内的已知黑客案例进行了比较。我们发现,我们的风险评分方法表现相当出色,在37个已知的黑客案例中识别了32个。我们还分析了我们的解决方案对单个实体的有效性。下图显示了Binance从2020年1月1日至2020年10月30日的风险评分。虚线红线代表已知的黑客案例。从图中我们观察到,我们的解决方案报告了5个已知黑客中的4个黑客的风险得分增加。也有几个峰值与已知黑客案例不一致。然而,这并不构成一个主要问题,因为对我们的模型来说,更重要的是识别尽可能多的黑客,减少未识别的黑客数量。

有趣的发现

在风险评分过程中,我们注意到,与规模较小的实体相比,规模较大的实体的风险评分往往有较大比例的假阳性记录。这是因为大型实体被谈论得更多,因此会有更多的负面帖子和虚假谣言,从而导致更高的不准确率。

另一个值得强调的有趣趋势是,围绕着黑客攻击通常有几个明显的高峰。这是由于不同数据源的反应时间不同。社交媒体网站Twitter和Reddit通常是第一个看到高风险事件发生时的高峰,因为用户会发帖提出他们观察到的异常情况,比如一个实体的网站在没有事先通知用户的情况下宕机。官方消息一般是在官方声明之后,稍后才会发布。

局限性

我们发现,我们的解决方案有两个潜在的局限性,首先是需要不断地维护收集器。网站设计可能会随着时间的推移而改变,这些网站的刮擦器需要更新,以确保相关信息仍能被检索到,从而达到风险评分的目的。

第二个限制是,验证一篇文章是否已被正确地标记为加密货币实体是具有挑战性的。例如,一篇报道Bancor可疑活动的文章可能也会因为一个不相关的事件提到Binance。我们的解决方案会错误地将新闻标记为两个实体,并将Binance标记为风险,即使它不是文本中的关键主题。然而,这并不是一个主要的限制,因为我们只使用新闻文章的标题和摘录来进行风险评分,这通常只包含文章的关键信息。

结语

我们的项目让监管机构可以轻松挖掘开源信息,更好地识别加密货币领域发生的风险事件。我们提供了一个分析文章并预测风险分数的语言模型,以及根据实体和来源信息汇总这些分数的方法。这些方法都被编织成一个可以端到端运行的自动化流水线。将该项目整合到Cylynx平台中,将对其现有功能进行补充,并为监管机构识别高风险加密货币实体提供巨大的帮助。

责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 加密货币
    +关注

    关注

    21

    文章

    4526

    浏览量

    41306
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    机器视觉检测PIN针

    、高效率检测需求的优选技术路径。 项目需求 解决方案 用相机采集图片,预处理,利用Blob分析识别定,高分辨率工业相机:精确捕捉Pin针细节。定制化光学系统:采用环形光源、同轴光或条形光源组合,优化打光
    发表于 09-26 15:09

    基于FPGA利用sm4进行实时图像加密

    求一份在fpga上利用sm4进行实时图像加密的文件
    发表于 09-15 19:05

    如何解决开发机器学习程序时Keil项目只能在调试模式下运行,但无法正常执行的问题?

    如何解决开发机器学习程序时Keil项目只能在调试模式下运行,但无法正常执行的问题
    发表于 08-28 07:28

    为什么内网穿透必须加密

    对于企业而言,选择支持 TLS 加密的内网穿透工具(如ZeroNews),并定期更新加密协议与证书,是保障业务安全、避免法律风险的最有效手段。
    的头像 发表于 08-19 15:47 547次阅读
    为什么内网穿透必须<b class='flag-5'>加密</b>?

    机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    本文转自:DeepHubIMBA无监督异常检测作为机器学习领域的重要分支,专门用于在缺乏标记数据的环境中识别异常事件。本文深入探讨异常检测技术的理论基础与实践应用,通过IsolationForest
    的头像 发表于 06-24 11:40 1201次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    明远智睿SSD2351开发板:语音机器人领域的变革力量

    源的开发资料为开发者提供了深入研究和定制语音机器人功能的基础,开发者可以根据不同的应用需求,对语音识别算法、语音合成引擎等进行优化和改进。一对一的技术支持则能及时解决开发过程中遇到的难题,保障语音机器
    发表于 05-28 11:36

    艾体宝干货 IOTA实战:如何精准识别网络风险

    加密强度,IOTA 能帮助企业快速识别潜在风险来源,并在攻击发生前及时响应。无论是边缘节点、分支机构,还是数据中心核心网络,IOTA 都能提供精准的流量数据分析与安全决策支持,助力企业构建更具韧性的防护体系。
    的头像 发表于 05-07 17:29 463次阅读
    艾体宝干货 IOTA实战:如何精准<b class='flag-5'>识别</b>网络<b class='flag-5'>风险</b>

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    的限制和调控) 本书还有很多前沿技术项目的扩展 比如神经网络识别例程,机器学习图像识别的原理,yolo图像追踪的原理
    发表于 04-30 01:05

    IOTA实战:如何精准识别网络风险

    本文介绍了物联网(IoT)在网络威胁识别中的应用价值,包括实时监控TCP连接、检测异常端口和分析SSL/TLS加密强度。Iota能帮助企业快速识别潜在风险来源,并在攻击发生前及时响应。
    的头像 发表于 04-22 11:34 452次阅读
    IOTA实战:如何精准<b class='flag-5'>识别</b>网络<b class='flag-5'>风险</b>

    开源项目!能够精确地行走、跳舞和执行复杂动作的机器人—Tillu

    的语音识别系统响应语音指令 为什么打造Tillu? 打造Tillu不仅是一个项目,更是一次学习体验。通过深入探索机器人技术、编程细节以及自定义动作和表情,释放你的创造力。无论你是学
    发表于 01-02 17:24

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 699次阅读

    ElfBoard开源项目|百度智能云平台的人脸识别项目

    百度智能云平台的人脸识别项目,旨在利用其强大的人脸识别服务实现自动人脸识别。选择百度智能云的原因是其高效的API接口和稳定的服务质量,能够帮助开发者快速实现人脸
    的头像 发表于 12-24 10:54 1868次阅读
    ElfBoard开源<b class='flag-5'>项目</b>|百度智能云平台的人脸<b class='flag-5'>识别项目</b>

    开源项目利用边缘计算打造便携式视觉识别系统

    利用边缘计算打造便携式人工智能解决方案,面向开发者的视觉识别项目! 自制视觉识别系统 我们将深入探究一套堪称绝妙的软硬件组合,以助力开发者轻松构建便携式、高效的视觉识别装置。需要哪些
    发表于 12-16 16:31

    【实战】人工智能0基础入门:基于Python+OpenCV的车牌识别项目(课程+平台实践)

    的车牌识别系统项目。02项目功能本项目致力于利用摄像头捕获的图像数据,通过先进的图像处理和模式识别
    的头像 发表于 12-16 10:43 1176次阅读
    【实战】人工智能0基础入门:基于Python+OpenCV的车牌<b class='flag-5'>识别项目</b>(课程+平台实践)