0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC MOSFET在实际应用栅极开关运行条件下的参数变化

QjeK_yflgybdt 来源:英飞凌工业半导体 作者:英飞凌工业半导体 2021-02-12 17:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

《SiC MOSFET在实际应用栅极开关运行条件下的参数变化(AC BTI)》

多年来,英飞凌一直在进行超越标准质量认证方法的应用相关试验,以期为最终应用确立可靠的安全运行极限。阈值电压和导通电阻在实际应用运行条件下的漂移,是我们深入研究的一个“SiC特有”的重点问题。我们将SiC MOSFET在高频率双极栅极开关条件下和高温下的应力称之为“AC偏压温度不稳定性(BTI)试验”。请注意,这一新的“AC BTI试验”是对标准化的“DC BTI试验”进行重要延伸后所得的结果,DC BTI试验在前一章中已经讨论过,通常用于进行Si和SiC MOSFET技术的质量认证。我们决定在SiC MOSFET的标准质量认证体系中加入这些新型的应力试验是因为,事实表明,在特定的交流栅极应力条件下,参数漂移可能超过施加标准直流栅极应力后的典型值。这与DC BTI始终被视为“最坏情况”的Si技术是不同的。

为了增进对这一新的漂移现象的认识,也为了指导客户在设计中如何避免可能危险的临界运行条件,英飞凌已在2018年发布了一份描述AC BTI的基本特点的应用说明(AN),并阐述了它在典型的应用环境中可能造成的后果。2019年,我们根据最新的发现对该应用说明进行了完善和扩展。本章内容可以算作英飞凌的应用说明的补充资料,旨在更深入地了解AC BTI现象与其他因素的关系。

AC BTI建模

英飞凌在各种运行条件下开展了广泛的试验,以期建立一个半经验的预测模型,用于描述阈值电压(VTH)在典型的SiC MOSFET应用中的变化,这些变化跟应力施加时间(tS)、栅极偏压下限(VGL)、栅极偏压上限(VGH)、开关频率(f)和运行温度(T)等相关。

f33e7c00-5811-11eb-8b86-12bb97331649.png

在高MOSFET开关频率(比如500kHz)下测量阈值电压是特别有挑战的,因为它不仅要求电气参数的分辨率高,还要求测量延时达到微秒级。为此,英飞凌已开发出定制的高端应力/试验设备,可用于在AC栅极应力试验期间进行快速的原位参数监测。

AC BTI的特点之一是,在我们研究过的所有器件中阈值电压漂移都是正的。阈值电压增大可降低MOS沟道过驱动电压(VGH-VTH),从而使得器件的沟道电阻(Rch)变大。

f3b9ee3a-5811-11eb-8b86-12bb97331649.png

在公式(2)中,L代表沟道长度,W代表沟道宽度,μn代表自由电子迁移率,Cox代表栅极氧化层电容,VGH代表栅极电压上限,而VTH代表器件的阈值电压。在高功率器件中,沟道电阻只是器件的总导通电阻的一个分量。

f400c292-5811-11eb-8b86-12bb97331649.png

在公式(3)中,Rch代表沟道电阻,RJFET代表结型场效应晶体管(JFET)电阻,Repi代表漂移带的外延层电阻,而RSub代表高掺杂SiC衬底的电阻。沟道电阻(∆Rch)因为栅极过驱动电压(∆VTH)降低而增大,最终使得器件的总导通电阻(∆RON)略微变大。总导通电阻增大可能导致静态损耗更大,进而导致运行期间的结温略微升高。为了防止在125°C下进行10年的连续开关操作期间,发生可能导致导通电阻出现潜在临界漂移(>15%,在数据表的最大额定值中已经考虑)的运行条件,英飞凌的应用说明提供了指导图表来说明推荐的栅极驱动电压和频率。这些指导图表依据的是在深入研究和测量AC BTI的基本特点之后创建的退化模型。

AC BTI的基本特点

本段主要借助一系列实验数据来揭示和阐明AC BTI的基本特点。漂移模型与数据进行拟合,以得到半经验模型系数。所示的拟合曲线对应用于计算AN中栅极电压指导图表的漂移模型。

1

与开关频率(f)的关系

AC BTI取决于开关事件次数,且AC VTH漂移符合幂律:

f48a910c-5811-11eb-8b86-12bb97331649.png

因此,更恰当的做法是绘制AC漂移与开关次数的关系图,而不是像DC BTI的典型做法一样绘制漂移与应力施加时间的关系图。在图12中,我们比较了两种不同的开关频率。当开关次数相同时,所看到的漂移是相似(不是完全一样)的,它与总应力施加时间无关。正是因为这个原因,相比在相对较低的开关频率下运行的应用(比如驱动),在较高开关频率下运行的应用(比如太阳能)更容易受到AC BTI的影响。此外,由于受影响的主要是静态损耗,所以AC BTI漂移对应用中的总损耗的最终影响,取决于给定的导通损耗与开关损耗之比。在某个特定的应用中,如果开关损耗在总损耗中占据绝对比例,那么即使开关频率更大,导通损耗的增加对于系统设计的影响也不大。

f4deda82-5811-11eb-8b86-12bb97331649.png

图12.在加速的栅极电压(VGH>18V;VGL<-5V)和温度(TS>150°C)条件下测量的AC VTH漂移。记录所用的总应力施加时间相同、但应力施加频率(50和500kHz)不同时的数据。AC VTH漂移显示出与开关次数成正比的幂律式增长。漂移模型用虚线表示。

2

与栅极偏压下限(VGL)的关系

AC BTI还有个特点是,它与栅极偏压下限(VGL)的关系。事实上,如果SiC MOSFET长时间在在关断状态施加负栅极偏压的模式下运行,AC BTI只会导致VTH漂移增大。如果器件是在VGL=0V时关断的,则获得的VTH漂移显示出典型的DC BTI漂移行为,而不依赖于开关次数。在关断状态下较大的负栅极电压可通过以下方式影响VTH漂移(参见图13):当开关次数较少时,VTH漂移因为弛豫效应而较少;但是,当开关次数较多时,VTH漂移通常因为负关态栅极电压更高导致漂移斜率更大(幂律指数)而变大。

f52b2234-5811-11eb-8b86-12bb97331649.png

图13.短时间内施加大量脉冲(f=500kHz)获得的加速条件下,以及上限栅极电压(VGH>+18V)和温度(TS>150°C)条件下,测量的AC VTH漂移。记录使用不同栅极电压下限时的数据。当使用的栅极电压下限高于-2.5V时(比如-1V),VTH漂移的幅度和斜率类似于或低于DC BTI。当施加更负的下限栅极电压时(比如-5V),AC BTI在经过大量的开关周期后开始占据主导地位。这是由AC BTI的漂移斜率(幂律指数)变大导致的。漂移模型(虚线)与实测数据的吻合度非常好。

3

与栅极偏压上限(VGH)及温度(T)的关系

AC BTI与通态栅极电压(VGH)和运行温度(T)的关系与DC BTI类似。如图14和图15所示,在较高的VGH等级和高温下,VTH漂移值更大。但是,这并不一定意味着,这种运行条件对于应用而言更为关键。

当VGH等级较高时,可以观察到BTI更大。但是,由于栅极驱动电压变大,总导通电阻对VTH变化变得不那么敏感。因此,尽管VTH漂移变大,但RON在VGH值较大时的相对变化可能反倒变小。这使得相比15V的通态电压,在18V的通态电压下运行得到的曲线更为缓和。

高温通常也可导致BTI变大。另外,在高温下,JFET和漂移区(epi)电阻相对于沟道电阻变得更加明显。因此,尽管VTH漂移变大,但RON在温度更高时的相对变化可能同样更小。

f5f13bb8-5811-11eb-8b86-12bb97331649.png

图14.在加速频率(f=500kHz)和温度(TS>150°C)条件下测量的AC VTH漂移。记录在典型的栅极电压下限和不同的栅极电压上限时的数据。施加较大的栅极电压上限导致实测数据发生近似平行的漂移。漂移模型(虚线)与实测数据的吻合度非常好。

f6e0338a-5811-11eb-8b86-12bb97331649.png

图15.在加速频率(f=500kHz)和栅极电压上限(VGH>18V)条件下测量的AC VTH漂移。记录在典型的栅极电压下限和不同应力温度下的数据。温度较高时的应力导致实测数据发生平行漂移。漂移模型(虚线)符合实测数据的趋势,但在本试验中稍微高估了漂移的绝对值。

4

漂移饱和

我们进行了近1年的开关频率加速AC栅极应力实验,以研究在典型应用开关条件下的长期AC BTI。在这些长期实验中观察到的漂移表明,在寿命终期实测的AC BTI漂移可能低于通过漂移模型预测的漂移,因为漂移效应已开始饱和。

5

与负载电流的关系

为完成评估,在各种负载电流下进行了几项实验。所观察到的VTH和RON漂移基本上符合AC BTI漂移模型,这表明负载电流本身并不会改变观测到的漂移行为。但也发现,栅极信号过冲和下冲——在逆变器应用中很常见——可能影响AC BTI。这一点在英飞凌的第二版应用说明中已有说明,其中还就如何正确地评估和抑制应用中的过冲和下冲给出具体的指导。

原文标题:【跨年技术巨献】SiC MOSFET在实际应用栅极开关运行条件下的参数变化(AC BTI)

文章出处:【微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英飞凌
    +关注

    关注

    68

    文章

    2443

    浏览量

    142303
  • asic
    +关注

    关注

    34

    文章

    1269

    浏览量

    124053
  • 电压
    +关注

    关注

    45

    文章

    5757

    浏览量

    120967

原文标题:【跨年技术巨献】SiC MOSFET在实际应用栅极开关运行条件下的参数变化(AC BTI)

文章出处:【微信号:yflgybdt,微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    三菱电机SiC MOSFET工业电源中的应用

    SiC器件具有低开关损耗,可以使用更小的散热器,同时可以更高开关频率运行,减小磁性元件体积。
    的头像 发表于 12-02 11:28 2681次阅读
    三菱电机<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>在</b>工业电源中的应用

    为什么MOSFET栅极前面要加一个100Ω电阻

    个电阻。如下图:那为什么要串联这个电阻呢? 开关状态,通常解释就是为了防止MOSFET开关
    发表于 12-02 06:00

    功率MOSFET管的应用问题分析

    过程中,还要考虑动态参数产生的开关损耗,所以,数据表中的ID不能用来进行设计。 RθJA和RθJC是二个不同热阻值,数据表中的热阻值,都是一定条件下测量得到,
    发表于 11-19 06:35

    半导体“碳化硅(SiCMOSFET栅极驱动”详解

    开关损耗均有明显减小。SiC MOSFET器件的使用,给实际系统效率的进一步提高,以及系统体积的进一步减小带来了希望。尤其光伏逆变与电池
    的头像 发表于 11-05 08:22 7789次阅读
    半导体“碳化硅(<b class='flag-5'>SiC</b>) <b class='flag-5'>MOSFET</b><b class='flag-5'>栅极</b>驱动”详解

    德州仪器UCC5871-Q1汽车级IGBT/SiC MOSFET栅极驱动器技术解析

    Texas Instruments UCC5871-Q1 IGBT/SiC MOSFET栅极驱动器是一款隔离式、高度可配置的单通道栅极驱动器,设计用于驱动EV/HEV应用中的大功率
    的头像 发表于 08-29 09:28 623次阅读
    德州仪器UCC5871-Q1汽车级IGBT/<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>栅极</b>驱动器技术解析

    Littelfuse非对称TVS二极管SiC MOSFET栅极驱动器中的应用

    碳化硅(SiCMOSFET电源和电力电子领域的应用越来越广泛。随着功率半导体领域的发展,开关损耗也不断降低。随着
    的头像 发表于 06-24 09:20 916次阅读
    Littelfuse非对称TVS二极管<b class='flag-5'>在</b><b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>栅极</b>驱动器中的应用

    SiC MOSFET模块的损耗计算

    为了安全使用SiC模块,需要计算工作条件下的功率损耗和结温,并在额定值范围内使用。MOSFET损耗计算与IGBT既有相似之处,也有不同。相对IGBT,MOSFET可以反向导通,即工作
    的头像 发表于 06-18 17:44 4133次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模块的损耗计算

    MOSFET栅极应用电路分析汇总(驱动、加速、保护、自举等等)

    同时抑制EMI干扰。5:保护栅极,防止异常高压条件下栅极击穿。6:增加驱动能力,较小的信号,可以驱动
    发表于 05-06 17:13

    SiC MOSFET驱动电路设计的关键点

    栅极驱动器是确保SiC MOSFET安全运行的关键,设计栅极驱动电路的关键点包括栅极电阻、
    的头像 发表于 05-06 15:54 1306次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>驱动电路设计的关键点

    SiC MOSFET驱动电路设计注意事项

    栅极驱动器是保证SiC MOSFET安全运行的关键,设计栅极驱动电路的关键点包括栅极电阻、
    的头像 发表于 04-24 17:00 1786次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>驱动电路设计注意事项

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    尖峰电压和系统 EMC 的抑制为目标。实际应用中,选择缓冲吸收电路参数时,为防止 SiC-MOSFET开关在开通瞬间由于吸收电容器上能量过多、需通过自身放电进而影响模块使用寿命,需要对
    发表于 04-23 11:25

    麦科信光隔离探头碳化硅(SiCMOSFET动态测试中的应用

    MOSFET漏源电压和栅极电压 测试难点 :普通无源探头和常规差分电压探头的寄生参数较大。由于SiC MOSFET具有极快的
    发表于 04-08 16:00

    MOSFET开关损耗和主导参数

    本文详细分析计算开关损耗,并论述实际状态功率MOSFET的开通过程和自然零电压关断的过程,从而使电子工程师知道哪个参数起主导作用并更加深入
    发表于 02-26 14:41

    SiC MOSFET参数特性

    碳化硅(SiCMOSFET作为宽禁带半导体材料(WBG)的一种,具有许多优异的参数特性,这些特性使其高压、高速、高温等应用中表现出色。本文将详细探讨
    的头像 发表于 02-02 13:48 2374次阅读

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性
    发表于 01-04 12:37