0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

频谱分析仪的使用小技巧

454398 来源:罗姆半导体社区 作者:罗姆半导体社区 2022-12-09 18:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

来源:罗姆半导体社区

频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。

它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。

随着电子技术的发展,世界各国加速了对电子领域的研究,具体体现在竞相提高通信、雷达、遥控、导航等无线电电子设备的威力和效能等方面。在这些方面,频谱分析仪成为必不可少的信号分析手段。频谱分析仪可以对信号的频率、电平、频谱纯度及抗干扰特性进行分析,使其成为电子领域必不可少的测量工具。

通过阐述频谱分析仪组成原理,分析频谱分析仪参数的相关性及探讨决定频谱分析仪性能的诸多因素,从而避免频谱分析仪在使用过程中由于操作不当导致的测试结果失真,保证测试结果的准确性和有效性,满足实际应用需求。下面我们来介绍一些频谱分析仪的使用技巧。

一、合理设置SPAN、RBW、VBW三大参数

频谱分析仪的Frequency(中心频率)、SPAN(扫宽)、Amplifier(参考电平)是实际工作中操作最为频繁的3个设置参数,大部分数字频谱仪面板都特别加大了这3项设置的按钮,以方便操作。而SPAN(扫宽)、RBW(分辨率带宽)、Amplifier(参考电平)是频谱仪工作的最重要的3大参数。

很多新手喜欢一上来就设置很大的SPAN参数,这会导致频谱仪自动调整使用较大的RBW数值,不利于观察信号特性。使用过大的RBW会使信号显示失真,另外当两个频率很相近的信号在大RBW分辨率下容易混淆在一起,无法区分。一般扫频式数字频谱仪的SPAN、RBW、SWEEP TIME(扫频时间)三者在默认自动设置状态下是相关联动的,频谱仪为了保持频谱图显示的实时性,当SPAN增大时会自动提高RBW,以确保扫频时间(SWEEP TIME)不至于太长。

如果用户在SPAN很大的情况下,手动设置较小的RBW,那么频谱仪将被迫出现较长的扫频时间。实际操作中不适当的设置可使频谱的SWEEP TIME长达几十秒甚至上百秒,理想状态下一秒钟刷新几十次的频谱图,变成几十秒才慢慢扫描出一幅频谱图,这时已经基本失去了实用性。

另外,频谱仪的RBW越大,底噪基线也会越高,会影响小信号的显示。不要指望在很大的扫描频率带宽下兼顾精细的分辨率带宽,除非你的频谱仪超高级、超昂贵。一般的频谱仪,尤其是入门级产品和老款产品,性能有限,需要恰当的设置较窄的SPAN来保证较小RBW下频谱图的实时性。通常的经验是用宽SPAN、高RBW来发现信号,然后用窄SPAN、低RBW来针对性地精确展现和测量信号。

一般频谱仪设置SPAN,对于窄带信号,可以是信号自身带宽的5~10倍,RBW设置为信号自身带宽的1/3~1/20。对于宽带信号,扫宽可以设置为信号带宽的2~5倍,RBW设置为信号自身带宽的1/10~1/20。对于需要在很宽频段范围内搜索小信号,如果频谱仪性能不够,可以采用分段扫描的方式。对于需要特别关注的小信号,可设置较小的RBW,这时频谱仪的底噪基线也会随之降低,同时还可以适当设置VBW(视频带宽)和AVG(平均)的次数,使频谱图底噪平滑,减少扰动,有利于小信号尖峰的显示。

频谱分析仪的Frequency(中心频率)、SPAN(扫宽)、Amplifier(参考电平)

现代很多入门级数字化频谱仪都提供小至100Hz的RBW,但在如此精细的RBW下,扫描速度会很慢,不少产品只是为了获得较好的产品指标而已,实用性有限,通常设定在1kHz以上的RBW才比较实用,实际上对于常规信号,1kHz、3kHz、5kHz、10kHz、30kHz、100kHz这几挡RBW最为常用。VBW在测量上的意义不及RBW,但适当设置VBW可平滑频谱底噪基线,减少扰动。通常设置RBW∶VBW=10∶1设置过高的RBW/VBW会影响频谱仪扫描时间。为了减少频谱底噪线扰动,除了优化设置VBW外,还可以设置频谱AVG平均次数,平均次数越大,底噪线扰动越小,不过这个设置不适用于抓瞬时信号。

外置衰减器

二、善用外置衰减器

频谱分析仪的输入端口只能输入小信号,内部衰减器也支持小功率信号,当实际需要测量高功率信号时,就需要外接外置独立的大功率衰减器。需要注意的是,一般频谱仪输入端口处标记的最高输入电平值(通常标+20~+30dBm)为损坏电平,而不是频谱仪最高可以工作的输入电平。实际测量中,一般频谱仪输入信号幅度建议不超过0dBm(即1mW)。输入过高的信号电平容易引起频谱仪信号处理电路的互调和失真,从而出现虚假信号,影响测量准确度。一般经验性的做法是,使用适当衰减量的衰减器,使高功率信号衰减至-20dBm以下信号输入频谱仪。大功率衰减器价格不菲,所以一般用户配置都不会很全,通常会在20dB、30dB、40dB这几个常用衰减量中配备一两件。实际操作中若遇到外置衰减器衰减量不够,在测量精度要求不是很高的情况下,可在大功率衰减器后串接小功率衰减器,总衰减量是串联衰减器标称值相加的总和。实际操作中若遇到外置衰减器衰减量过大,以至于影响对小信号的测定,我们可以尝试手动关闭频谱仪机内的Attenuator(衰减器),以减少信号通路中的总衰减量。

频谱仪机内衰减器在默认状态下是根据输入端口电平和Amplifier参考电平设定自动调节的,为了保护机内输入端高放单元和提高信号传输匹配,通常最小状态依然会保留5~10dB衰减量,在特殊需要情况下,我们可通过手动设置将其关闭。使用了外置衰减器会使输入频谱仪的信号等比减小,为了读数方便,大部分数字频谱仪都可以设置外置衰减器的衰减量,这样在显示幅度测量数值时会进行自动折算修正,无需人为换算,方便读数。

三、电平刻度的转换和阻抗匹配问题

通常,频谱仪的显示刻度单位是dBm,而在场强测量和有关电波传播问题讨论中,习惯采用dBμv/m为单位,因此首先就有一个单位转换问题。实际上场强测量就是标准天线端感应电压的测量,因此只要将频谱仪的读数换算成电压单位,加上天线的天线系数即可求得待测场强。频谱仪的单位换算系数随其输入阻抗的不同而不同,对于502系统,VdBuV=PdBm+107dB而对于752系统,则VdBuV = PdBm+ 108.8dB

现代频谱仪多采用微机处理,显示刻度可以自动转换。在实际测量中要特别注意天线阻抗与测试系统的匹配问题,避免产生失配误差。由于频谱仪在使用中是进行宽带扫描,所以所用天线要求也都是宽带天线,而宽带天线的VSWR一般都较大,如果与频谱仪联接的不是匹配天线,则要对所用天线的天线系数重新校对。

在实际测量中,输入衰减器不宜放在0dB的位置,如果衰减器置0,输入信号直接接到混频器上,则阻抗特性变差,造成较大的失配误差。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 频谱分析仪
    +关注

    关注

    16

    文章

    1271

    浏览量

    88866
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    频谱分析仪的应用范围与技术解析

    频谱分析仪集信号分析、网络测试与EMC评估于一体,具备高动态范围、多频段覆盖及扩展测量功能,广泛应用于通信、电磁兼容及射频元件测试
    的头像 发表于 10-29 16:11 302次阅读

    如何合理选择频谱分析仪,便携式频谱分析仪,手持式频谱分析仪

    我们应该如何合理选择频谱分析仪呢?使用者往往在选择或使用频谱分析仪的时候,其最主要的核心关注点在于它的测量能力、使用场景、操作效率等这三大维度方面。那应该如何选择,具体可以以SYN5213系列平板
    的头像 发表于 09-17 17:53 356次阅读

    如何挑选一款合适的便携式实时频谱分析仪

    在当今复杂的电磁环境中,便携式实时频谱分析仪成为众多领域不可或缺的工具。无论是通信领域的信号监测与干扰排查,还是科研工作中的频谱分析,亦或是工业生产中的电磁兼容性检测,一款合适的便携式实时频谱分析仪
    的头像 发表于 09-17 17:52 290次阅读

    4052E信号频谱分析仪

    4052E信号频谱分析仪 2Hz~26.5GHz 4052系列信号/频谱分析仪 简述 Ceyear 4052具备出色的测试动态范围、相位噪声、幅度精度和测试速度,具备频谱分析、I/Q分析
    的头像 发表于 06-17 17:48 437次阅读
    4052E信号<b class='flag-5'>频谱分析仪</b>

    USB微型频谱分析仪模块介绍

    SYN5216型USB微型频谱分析仪模块是一种重要的电子测量仪器,用于测量信号的频谱特性。它能够将信号分解为频率成分,并提供关于每个频率成分的幅度和相位信息。频谱分析仪广泛应用于各个领域,提供了丰富
    的头像 发表于 06-06 13:55 444次阅读

    是德频谱分析仪在无线通信信号分析中的应用研究

    无线通信技术的广泛应用使得对通信质量和稳定性的要求不断提高。频谱分析仪作为一种能够提供信号频率分布详细信息的测试仪器,在无线通信领域中具有不可或缺的地位。是德频谱分析仪以其高精度、多功能和灵活性成为
    的头像 发表于 03-19 14:24 619次阅读
    是德<b class='flag-5'>频谱分析仪</b>在无线通信信号<b class='flag-5'>分析</b>中的应用研究

    频谱分析仪的技术原理和应用场景

    频谱分析仪是一种专为光信号的频谱分析而设计的精密仪器,其技术原理和应用场景如下:技术原理光频谱分析仪的工作原理主要基于物质与光之间的相互作用,特别是光通过物质时产生的吸收、发射或散射现象。这些现象
    发表于 03-07 15:01

    是德科技 N9020B频谱分析仪:精准洞察信号世界

    信号分析仪/频谱分析仪 N9020B
    的头像 发表于 03-05 15:00 787次阅读

    频谱分析仪基础

    本书介绍了频谱分析仪原理,数字中频,幅度和频率精度,灵敏度和噪声,动态范围,扩展频率范围,现代信号分析仪
    发表于 03-05 11:36

    N9020A 频谱分析仪介绍:性能、特点及应用

    在无线通信、雷达测试、射频电路调试等领域,频谱分析仪是必不可少的测试工具。其中,是德科技(Keysight)N9020A 频谱分析仪以其高性能、广泛的频率范围和强大的信号分析能力,成为众多工程师
    的头像 发表于 03-03 11:49 1352次阅读
    N9020A <b class='flag-5'>频谱分析仪</b>介绍:性能、特点及应用

    是德频谱分析仪的振动对测量的干扰

    是德科技(Keysight Technologies)的频谱分析仪以其高精度、宽频带和丰富的功能而闻名,广泛应用于电子工程、通信、航空航天等领域。然而,在实际应用中,环境振动常常对测量结果造成显著
    的头像 发表于 02-14 15:30 732次阅读
    是德<b class='flag-5'>频谱分析仪</b>的振动对测量的干扰

    是德频谱分析仪雷达信号测量

    ,如何对这些信号进行高效、精准的测量,成为了许多行业专家共同面对的挑战。在这一领域,是德频谱分析仪凭借其卓越的性能和创新的技术,成为了雷达信号测量的首选工具。 频谱分析仪:雷达信号测量的核心 雷达信号测量不仅仅是对信
    的头像 发表于 02-11 16:40 745次阅读
    是德<b class='flag-5'>频谱分析仪</b>雷达信号测量

    usb微型实时频谱分析仪功能特点

    关键词:usb微型频谱分析仪频谱分析仪模块,实时频谱分析仪        usb微型实时频谱分析仪因其体积小巧方便携带广泛应用于无线电技术的各个领域,今天我们就来了解一下usb微型
    的头像 发表于 02-05 18:13 696次阅读

    4041系列 频谱分析仪

    ——新利通仪器仪表—— 4041系列丨频谱分析仪 编辑   4041频谱分析仪采用紧凑型的手提式机箱结构,目前共包含四个型号的产品,频率测量范围分别是9kHz~20GHz、9kHz~26.5GHz
    的头像 发表于 01-10 17:29 658次阅读
    4041系列 <b class='flag-5'>频谱分析仪</b>

    惠普HP8560E 频谱分析仪

    惠普HP8560E 频谱分析仪 30Hz~2.9GHz 产品信息: 8560E 系列频谱分析仪 8560E系列便携式频谱分析仪具有通常在较大型且更昂贵的台式分析仪上才有的测量能力和性能
    的头像 发表于 12-21 14:49 776次阅读