您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子百科>网络布线>光纤设备>

一文详解中红外光纤及应用

2022年11月21日 11:55 凌云光子 作者:凌云光子 用户评论(0
<p> 自从1960年梅曼实现第一束激光以来,激光作为一种特殊的电磁波已经伴随着人类走过了62个年头,成为与现代生产生活密不可分的角色。<br /><br /> 不同频率(波长)的电磁波,由于其特性不同,在不同的领域发挥着重要的作用,比如无线电传输,毫米波雷达,医用X射线等。<br /><br /> 随着光纤激光技术的成熟与发展,越来越多种类的光源的应用也被人们发掘出来,比如1um波段用于焊接切割等工业制造,紫外波段用于晶圆加工,可见光蓝绿波段用于动力电池加工等。<br /><br /> 2um-5um中红外光纤激光也有自己独特的应用:该波段覆盖了几段大气窗口,使其可用于激光雷达、大气通信、激光测距、超高分辨率天文光谱仪标定和国防光电探测等;<br /><br /> 中红外波段包含被称为“分子指纹”的特征谱线,可被用于高速、高分辨率、高光谱灵敏度、高信噪比的中红外光谱测量;<br /><br /> 水分子在3um附近有很强的吸收峰,使其可用于很多医疗操作;<br /><br /> 位于分子共价键的吸收谱段,使其可用于分子含量的检测和分子类型的鉴定,实现分子的成像等。</p> <p> <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8KAEj5BAA4kISEl5Tc737.png" alt="8fb99358-67d8-11ed-8abf-dac502259ad0.png" /></p> <p> 不同波段电磁波的应用</p> <p> <strong><strong>PART</strong> 0<strong>1</strong></strong> <strong><strong><strong> </strong></strong></strong><strong><strong><strong>中红外光纤材料</strong></strong></strong>  <br /><br /> 目前光纤使用的材料主要有硅酸盐玻璃、氟化物玻璃和硫系玻璃,不同玻璃具有不同的理化参数,成纤之后在色散特性、传输损耗特性、非线性特性以及热特性等方面也有明显不同。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8KATJ_nAAPec4bmyko883.png" alt="9025add6-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> (a)氟化物光纤   <br /><br /> (b)硫化物光纤 <br /><br /> (c)卤化物光纤<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8KAIUuBAAMT4IXwdZw487.png" alt="90574422-67d8-11ed-8abf-dac502259ad0.png" /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8OAE_-7AANZJXyG02o492.png" alt="908b58b6-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 中红外大模场空芯光纤<br /><br />   <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8OADMk3AANrtdYwErU694.png" alt="90a06058-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 不同材料光纤的物理参数 <br /><br /> 相对于硅酸盐,氟化物玻璃材料的最大声子能量500cm-1左右, 硫系玻璃材料的最大声子能量为200cm-1, 理论上在中红外波段可以得到更低的传输损耗。  <br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8OAKtLzAAbGS9KeP3E844.png" alt="90c7f280-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 不同材料光纤的发射波长和传输损耗  <br /><br /> 氟化物光纤被用于2-3um光输出,硫化物光纤被用于3-6.5um光输出,比6.5um更长波长可以用卤化物光纤输出。<br /><br /> 氟化物光纤主要是以氟化铝(AlF3 )、ZBLAN(53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF)或氟化铟(InF3 ) 等为基质材料的氟化物多组分玻璃光纤。<br /><br /> 其中ZBLAN是目前比较常用的光纤,可以实现稀土掺杂,对于其与硅基光纤的熔接工艺也相对比较成熟,商用光纤熔接机即可,InF和AlF光纤可用作光纤器件(比如合束器)和光纤端帽的制作。<br /><br /> 但是易潮解是氟化物光纤主要的缺点。<br /><br /> 商用的硫化物光纤以As2S3、As2Se3为代表,一般用于光传输,可制作成大芯径或高非线性的光纤跳线,但是受限于掺杂工艺只以无源形式存在。<br /><br /> 卤化物光纤可传输波长更长,但易氧化较脆弱使其也只能以无源跳线形式存在,不同材料光纤各有利弊。  <br /><br /> 按着实现中红外激光的实现方式,可以把中红外光纤分为有源和无源两个方面,主要包括基于掺杂稀土的中红外激光,如掺Er3+、Dy3+的ZBLAN光纤激光;基于非线性效应的中红外激光,如拉曼激光、超连续谱激光;基于特殊波导结构的空芯光纤,配合充斥不同气体实现不同波长的中红外激光。<br /><br /> 随着光纤激光技术的发展,更多的商用中红外光纤获得应用,相应的光纤处理设备及工艺也随之普及起来。    <br /><br /><strong>PART 02</strong> <strong> </strong><strong> 有源光纤</strong><strong> </strong>    <br /><br /><strong>(1)掺Tm硅基光纤</strong>    </p> <p> 2um光纤激光器,无论是超快还是高功率连续激光,已经非常普遍,组成单谐振腔的光纤光栅、作为MOPA结构的各放大级增益光纤,都有标准的货架产品。<br /><br /> 同时,2um光源还可以作为产生中红外超连续谱和OPO参量放大的泵浦源。</p> <p> 2018年,Jena大学利用250fs,80MHz的种子源,通过多级不同芯径掺Tm光纤(10/125um,TDF;50/250um Tm:PCF)实现功率放大(TDFA),又将脉冲压缩,实现了平均功率1150W,峰值功率50MHz,脉冲宽度256fs的2um输出,这也是目前功率最高的2um超短脉冲。</p> <p> <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8OAd3KLAAY6BdDSwd8624.png" alt="91158054-67d8-11ed-8abf-dac502259ad0.png" /></p> <p> 2014年,Liu等利用2um皮秒光纤MOPA系统泵浦ZBLAN光纤,当2um皮秒泵浦功率达到最大值42W时, 超连续谱激光的最大输出功率为21.8W, 光谱如图所示, 光谱覆盖范围为1.9um-3.8um[4]。</p> <p> <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8OAZddgAAOaFIqMX3M733.png" alt="913214f8-67d8-11ed-8abf-dac502259ad0.png" />  <br /><br /><strong>(2)</strong><strong>掺稀土离子的氟化物光纤</strong>    <br /><br /> 利用Er3+、Dy3+、Ho3+离子掺杂的ZBLAN光纤实现2.8um-3.5um单独波长输出。  <br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAHHslAAKAZBKJyw0943.png" alt="9149efba-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 中红外稀土掺杂离子能级跃迁图<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAVOYXAAKi5mRv-n4740.png" alt="916eb340-67d8-11ed-8abf-dac502259ad0.png" /> 中红外稀土掺杂离子氟化物光纤  <br /><br /> 2018年加拿大拉瓦尔大学利用Er3+ZrF光纤在2.8um波段实现了41.6W连续光输出,这是目前中红外光纤激光输出的最高功率。<br /><br /> 同年首次在掺Dy3+的氟化物光纤内实现了光纤激光器的一体化设计, 将一对光纤布拉格光栅直接刻写在掺 Dy3 +的氟化物光纤上实现了谐振腔结构。<br /><br /> 同时, 采用全光纤的掺 Er3 + 光纤激光器作为泵浦源, 实现了全光纤结构3.24um激光输出, 输出功率为10 W, 相对2.83um泵浦光的斜率效率为58% ,10 W 输出功率也是输出波长3um以上的光纤激光器的最高输出功率。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAY9spAARyxm5zSSs362.png" alt="91a0982e-67d8-11ed-8abf-dac502259ad0.png" />  <br /><br /> 2021年, 深圳大学郭春雨等在国内首次报道了功率为20W的全光纤结构的2.8um中红外激光输出。<br /><br /> 所用的掺Er3+:ZrF4光纤直径为15um,数值孔径NA约为0.12,总长度为6.5m,吸收系数2-3dB/m@976nm,高反光栅(99%HR-FBG)和低反光栅(10%OC-FBG)直接刻写在增益光纤上,中心波长2825nm,与Er纤形成谐振腔。如图所示,硅基与ZBLAN光纤,以及端帽与无源纤的熔接工艺为报道者团队自主研发,制作了包层光滤除器和AlF3光纤端帽。<br /><br /> 当泵浦功率140W,输出功率20.3W@2.8um,光光转换效率14.5%。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAfSOjAAMWZ1ILbC0390.png" alt="91d6b2c4-67d8-11ed-8abf-dac502259ad0.png" />   <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAVMTvAALzJRo4AXM162.png" alt="91ea79da-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 全光纤2.8um单模激光器系统    <br /><br /><strong>PART</strong> <strong>03</strong> <strong>  </strong><strong>无源光纤</strong><strong> </strong>    <br /><br /><strong>(1)</strong><strong>中红外超连续谱</strong>      <br /><br /> 带有一定峰值功率的脉冲光,进入非线性晶体或者光纤时,由于调制不稳定性(MI)、自相为调制(SPM)、交叉相位调制(XPM)、受激拉曼散射(SRS)、四波混频(FWM)、拉曼孤子自频移(Raman SSFS)等非线性效应,激光光谱得到展宽形成超连续谱,由于介质的色散特性、 泵浦光( 入射介质的激光) 的脉冲宽度、 泵浦光波长所处的色散区域以及距离零色散波长(ZDW) 的远近不同, 在超连续谱产生过程中起主导作用的非线性效应也不同。<br /><br /> 一般地以2um或者更长波长的脉冲光,泵浦带有一定非线性系数的氟化物、硫化物或者碲化物等光纤,实现覆盖中红外波段的超连续谱。<br /><br /> 全光纤结构的中红外超连续谱,比较关键的技术之一是硅基光纤与氟化物光纤的非对称熔接工艺,目前可以通过工业用的特种光纤熔接设备,在优化了熔接参数后实现损耗0.03dB,达到模场匹配的要求。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8SAEG7TAAXCVnuyWjY807.png" alt="92012df6-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> (a)全光纤超连续谱激光结构  (b) 石英与ZBLAN光纤熔接 (c)石英与ZBLAN光纤端面 <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8WAJEvPAAJ5m5N4I-Q390.png" alt="92384840-67d8-11ed-8abf-dac502259ad0.png" />  <br /><br /> 2016年,国防科大利用此熔接技术,以16.3W的皮秒激光泵浦ZBLAN光纤,实现了10.67W的超连续谱输出。<br /><br /> 2020年课题组设计了ZBLAN光纤参数,实现了更低的石英光纤与氟化物光纤损耗,以及更加平坦的超连续谱1.92um-4.29um,平均功率20.6W,如图所示。  <br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8WAd24cAAXmUDCMYN0265.png" alt="925bc162-67d8-11ed-8abf-dac502259ad0.png" />  <br /><br /> 利用非线性ZBLAN光纤实现高功率、高平坦度中红外超连续谱,对泵浦源的波长、峰值功率以及石英与氟化物光纤的模场匹配提出了更高的要求。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8WAApmoAAN0mXyorww277.png" alt="92aaa818-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> 氟化物光纤产生中红外超连续谱参数 <br /><br /> 相比于ZBLAN光纤,InF3光纤在更长波段有更高的透过率,因此被用于中红外超连续谱长波长拓展的选择,这也与其零色散点波长相关ZDW。<br /><br /> 2020年,国防科大利用1.9um-2.6um超连续谱作为泵浦源,在InF3光纤中获得1.9um-4.9um,平均功率11.8W的超连续谱输出,其中3.8um以上波段成分2.18W,占比18.5%。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8WAW7lkAAMpeC7Qntw163.png" alt="9318c410-67d8-11ed-8abf-dac502259ad0.png" /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8WAEfvfAAPBf228GG8704.png" alt="933c7702-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /><strong>(2)</strong><strong>刻栅</strong>      </p> <p> 光纤光栅对于光纤激光器,在谐振腔、滤波、色散啁啾等方面有着非常重要的应用。随着软玻璃光纤和刻栅工艺的发展,中红外光栅的刻写逐渐成熟。<br /><br /> 由于氟化物光纤不具备光敏性,不能采用传统的紫外曝光法刻写,所以飞秒直写的选择备受青睐,一般包括相位掩模版法、逐点法、逐线法、逐面法。</p> <p> 2018年,拉瓦尔大学在双包层掺Er3+:ZBLAN光纤中利用飞秒激光相位掩膜版法刻写了中心波长3552 nm的光纤光栅对,其中高反光栅和低反光栅的反射率分别为90%和30%。<br /><br /> 2020年,麦考瑞大学在InF3光纤中刻写了中心波长为4 μm、反射率大于95%的FBG,其刻栅周期为2.07 μm,这一工作对推动4 μm高功率全光纤化激光器具有重要意义。</p> <p> 2022年深圳大学采用飞秒逐线直写法,装置如图所示,利用氟化物光纤制备了窄线宽、高反射率的中红外光纤光栅,中心波长2964.34nm,3dB带宽1.24nm,反射率99.27%,并且运用此光栅完成了20W,2.8um光纤激光器。实验当中使用了14/250um的ZBLAN光纤,光源为513nm,150nJ的飞秒激光器,刻线扫描速度100um/s,刻线长度50um,周期间隔1.994um。如图为制备后的光纤端面。</p> <p>   <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8aALitNAASdjachsiE055.png" alt="9408d40a-67d8-11ed-8abf-dac502259ad0.png" />   <img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8aASlkDAARjPTHlfkc014.png" alt="942760be-67d8-11ed-8abf-dac502259ad0.png" />   <strong>(3)其他器件</strong>   石英光纤与氟化物、硫化物等材料的光纤切割、熔接、拉锥等处理工艺,是全光纤结构中红外激光的关键技术之一,由于熔点、硬度等物理特性的不同,很多对于石英光纤的处理经验无法直接借鉴,需要用到具有复合功能的特种光纤处理设备,通过多个参数的调节与优化,达到所需要求。经过多年的努力,光纤激光的工作者们,极大优化了中红外光纤的处理工艺,目前利用商用的特种光纤处理设备,可以得到非常低的熔接损耗,被用在中红外模场匹配器、合束器/分束器、输出端帽等多种器件。<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8aAalXUAAPo-5QQncs585.png" alt="9450b644-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> (a)特种光纤处理设备(b)石英与氟化物光纤熔接(c)AlF3光纤端帽<br /><br /><img src="https://file1.elecfans.com//web2/M00/98/2E/wKgaomTnQ8aAVs3FAALoCmyuOW8027.png" alt="95bb2438-67d8-11ed-8abf-dac502259ad0.png" /><br /><br /> (a)氟化物光纤合束器 (b)硫化物光纤合束器    (c)卤化物光纤跳线  <br /><br /> 2019年,拉瓦尔大学分别在氟化物光纤的端面上制备了不同材料的光纤端帽,有ZrF4、AlF3、GeO2、SiO2、Er:YAG和Al2O3,当使用20 W@3 μm的激光连续测试100小时,实验中基于氧化物的光纤端帽都通过了测试,但也存在着长时间工作后端帽输出面温度上升的问题。<br /><br /> 为此,科研人员进一步利用磁控溅射法制备一层Si3N4薄膜到光纤端帽上,以Al2O3端帽为例,在封装了100 nm厚度的Si3N4薄膜后,在同样的测试条件下连续运转100小时没有出现温度上升的问题。    <br /><br /><strong>PART</strong> <strong>0</strong><strong>4</strong> <strong>  </strong><strong>总结</strong><strong> </strong>    <br /><br /> 氟化物、硫化物、卤化物、空心光纤等中红外光纤,从功率、光谱、光纤器件应用等各个方面大大推动了中红外激光的发展,随着中红外材料及光纤技术的不断成熟,将会有更多高品质的中红外光纤产品问世,在科研、工业制造、医疗等领域发挥越来越大的作用。 <br /><br /><br /><br /><br /><br /> 审核编辑:刘清</p>

非常好我支持^.^

(3) 100%

不好我反对

(0) 0%

( 发表人:刘芹 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!