您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子百科>半导体技术>半导体器件>

双极型晶体管原理详细介绍

2010年03月05日 11:55 www.elecfans.com 作者:佚名 用户评论(0

双极型晶体管原理详细介绍

电子和空穴两种载流子都起作用的晶体管,又称结型晶体管。

1948年,人们发现原始的点接触晶体管具有放大作用,但由于金属丝与晶体表面的接触很不可靠,因此使用受到很大限制。1950年,用切克劳斯基法拉出锗单晶,接着又拉出硅单晶。1951年发展锗的区域提纯技术和硅的无坩埚区域提纯技术,获得纯度达99.999999%的锗、硅单晶。在PN结理论发展的基础上,加上锗材料、硅材料制备技术的进展,1951年用合金法制成合金结晶体管。1955年杂质向半导体中扩散的新技术得到发展,1956年制成扩散型晶体管,使晶体管的工作频率提高两个数量级。1959年硅表面热生长二氧化硅工艺和光刻技术的发展,促使1960年研制成功平面型晶体管。由于晶体管表面有了钝化层,使器件的稳定性大为提高。平面技术为集成电路和大规模集成电路的研究打下基础。
  基本结构  

双极型晶体管有两种基本结构;PNP型和NPN型(图1),由两个背靠背的PN结组成。在这三层半导体中,中间一层叫基区(B),左右两层分别叫发射区(E)和集电区(C)。发射区和基区间形成发射结,集电区和基区间形成集电结。晶体管按功率耗散能力大小可分为小功率管、中功率管、大功率管。按工作频率的高低可分为低频管、高频管、微波管。按制造工艺又可分为合金管、合金扩散管、台式管、外延平面管(图2)。合金管的基区宽度和结电容都较大,频率性能差,一般仅用于低频电路。合金扩散管的基区由扩散形成,基区较薄,基区杂质分布所形成的内建场能加速少数载流子渡越,因此它的频率特性较好,可用于高频范围。外延平面管的基区和发射区都可用扩散或离子注入工艺形成,基区宽度可精确控制到 0.1微米。采用电子束曝光、干法腐蚀等新工艺可获得亚微米的管芯图形线条。因此,它的工作频率可从超高频一直延伸到微滤 X波段。外延平面管加上掺金工艺可制成超高速开关管和各种高速集成电路(如ECL电路)。
 
双极型晶体管
  放大作用

 对于 NPN晶体管共发射极电路,若在发射结上加正偏压,在集电结上加负偏压,则晶体管处于放大状态。从基极注入1毫安的电流IC,在集电极就可获得几十毫安的输出电流IC。IC/IC称为共发射极电流放大系数β,一般在10~200之间。由于晶体管的输出阻抗远大于输入阻抗,输出电流又远大于输入电流,因此共发射极晶体管具有很强的电压放大和功率放大能力。在高频工作时,如果使晶体管的外接网络阻抗分别与晶体管的输入、输出阻抗匹配,则可获得最佳功率增益。根据电路的工作需要,晶体管还可接成共基极或共集电极形式。
  应用

 双极型晶体管比电子管体积小、重量轻、耗电少、寿命长、可靠性高、已逐步取代电子管。双极型晶体管已广泛用于广播、电视、通信、雷达、电子计算机、自动控制装置、电子仪器、家用电器等各个领域。
  双极型微波低噪声管广泛用于雷达接收机、地面移动通信设备、航空电台、微波接力通信和遥控遥测设备。高速开关晶体管用于高速计算机的逻辑运算单元。高压大功率台式双极型功率管是电视机行扫描电路和电源电路的关键器件。在超低频通信、医用电子仪器中大量使用超低频低噪声晶体管。双极型微波功率晶体管用于相控阵远程预警雷达、微波通信发射机、通信卫星和气象卫星的发射部件中。
  发展趋势

 硅晶体管的实际频率特性已经接近设计极限。为进一步提高双极型晶体管的工作频率,发展了异质结双极型三极管。采用异质结新结构,可利用高电子迁移率的Ⅲ-Ⅴ族化合物半导体制成双极型晶体管,这是双极型晶体管制造技术的一次重大变革。

虽然二极管是很有用的器件,但它不能放大信号,几乎所有的电路都以某种方式要求放大信号。一种能放大信号的器件就是双极型晶体管(BJT)。

图1是两种双极型晶体管的结构图。每个晶体管有3个半导体区,他们分别是发射极,基极和集电极。基极总是夹在发射极和集电极之间。NPN管由N型的发射极,P型的基极和N型的集电极组成。类似的,PNP管由P型的发射极,N型的基极和P型的集电极组成。在这些简图中,晶体管的每个区都是均匀掺杂的矩形硅。现代的双极型晶体管稍微有点不同,但工作原理还是一样的。

图1中也画出了两种晶体管的电路符号。发射极上的箭头表明了发射极-基极结正向偏置情况下电流的流向。虽然集电极和基极之间也有结,但在集电极上没有标上箭头。在图1简化的晶体管中,发射极-基极结和集电极-基极结看上去是一样的。看上去把集电极和发射极对调对器件没有什么影响。实际上,这两个结有不同的掺杂属性和几何形状,所以不能对调。发射极靠箭头和集电极区分开来。

image:bk065231j-1.jpg

双极型晶体管能看成是两个背靠背连起来的PN结。晶体管的基极区非常的薄(大约1-12μm)。由于两个结靠的非常近,载流子能在复合前从一个结扩散到另一个结。因此一个结的导通对另一个结也有影响。

图2(A)中是一个基极-发射极零偏置,基极-集电极5伏偏置的NPN晶体管。由于没有结是正向偏置,所以晶体管的三端都只有很小的电流。两个结都反向偏置的晶体管称为cutoff状态。图2(B)中有10微安的电流注入基极。这个电流使得基极-发射极正向偏置了约0.65伏。这时虽然基极-集电极还是反向偏置状态,但有一个是基极电流100倍的集电极电流流过基极-集电极结。这个电流是正向偏置的基极-发射极结和反向偏置的基极-集电极结相互作用的结果。处于这种偏置状态的晶体管,它被称为在forward active区。如果发射极和集电极相互对调,基极-发射极变成反向偏置,基极-集电极正向偏置,这个晶体管称为在reverse active区。实际上,晶体管很少工作在这种方式下。

image:bk065231j-2.jpg

图3解释了为什么集电极电流能流过反向偏置的结。只要基极-发射极变成正向偏置,马上就有载流子流过这个结。流过这个结的大多数电流是由重掺杂的发射极注入轻掺杂的基极的电子。大多数电子在他们复合前就扩散通过了很窄的基极区。因为基极-集电极是反向偏置的,所以只有很少的多数载流子能从基极流到集电极。同样的,这个阻止多数载流子运动的电场帮助少数载流子运动。在基极里,电子是少数载流子,所以他们都穿过了反向偏置的基极-集电极结进入集电极。在集电极里,他们又成了多数载流子,往集电极的引线端运动。所以集电极的电流里主要是顺利的从发射极来到集电极而没有在基极复合的电子。

有些注入到基极的电子也确实没有到达集电极。那些没有到达集电极的电子在基极中复合了。基极的复合需要消耗从基极引线端流入的电流里的空穴。也有些空穴从基极注入到了发射极,但他们都很快的复合了。这些空穴就是基极引线端电流的第2个来源。这些复合的过程通常消耗不超过1%的发射极电流,所以只需要一个很小的基极电流就能维持基极-发射极的正向偏置。

非常好我支持^.^

(324) 92%

不好我反对

(28) 8%

( 发表人:admin )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!