电子发烧友网 > RF/无线 > 正文

射频电路设计的五大案例及解决方法

2020年11月25日 17:03 次阅读

在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。

电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。因此每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。射频(RadioFrequency)简称RF

射频电路由无源元件、有源器件和无源网络组成。射频电路中使用的元器件频率特性与低频电路中的不一样。除了元器件频率特性与低频电路不同外,在电子技术领域中射频电路的特性也不同于低频电路。在高频条件下,杂散电容和杂散电感对电路的影响很大。在低频电路中,这些杂散参数对电路的性能影响很小,随着频率的增加,杂散参数的影响越来越大。在早期的VHF频段电视接收机中的高频头,以及通信接收机的前端电路中,杂散电容的影响都非常大以至于不再需要另外添加电容。

此外,在射频条件下电路存在趋肤效应。与直流不同的是,在直流条件下电流在整个导体中流动,而在高频条件下电流在导体表面流动。其结果是,高频的交流电阻要大于直流电阻。

在高频电路中的另一个问题是电磁辐射效应。随着频率的增加,当波长可与电路尺寸12比拟时,电路会变为一个辐射体。这时,在电路之间、电路和外部环境之间会产生各种耦合效应,因而引出许多干扰问题。

RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份。虽然射频电路板设计上还有很多不确定性,但是RF电路板设计还是有一定的法则可以遵循。下文将探讨与RF电路板分区设计有关的各种问题。

射频电路设计的五大案例及解决方法

五大经验总结

一、射频电路布局原则

在设计RF布局时,必须优先满足以下几个总原则:

(1)尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路;

(2)确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜箔面积越大越好;

(3)芯片和电源去耦同样也极为重要;

(4)RF输出通常需要远离RF输入;

(5)敏感的模拟信号应该尽可能远离高速数字信号和RF信;

二、物理分区、电气分区设计分区

物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。

1、物理分区问题

元器件布局可以看出RF设计的好坏,最有效的技术是首先固定位于RF路径上的元器件,并调整其朝向以将RF路径的长度减到最小,使输入远离输出,并尽可能远地分离高功率电路和低功率电路。

最有效的电路板堆叠方法是将主接地面(主地)安排在表层下的第二层,并尽可能将RF线走在表层上。将RF路径上的过孔尺寸减到最小不仅可以减少路径电感,而且还可以减少主地上的虚焊点,并可减少RF能量泄漏到层叠板内其他区域的机会。

2、RF布线原则

RF与IF走线应尽可能走十字交叉,并尽可能在它们之间隔一块地,正确的RF路径对整块PCB板的性能而言非常重要,这也就是为什么元器件布局通常在手机PCB板设计中占大部分时间的原因。在手机PCB板设计上,通常可以将低噪音放大器电路放在PCB板的某一面,而高功率放大器放在另一面,并最终通过双工器把它们在同一面上连接到RF端和基带处理器端的天线上。需要一些技巧来确保直通过孔不会把RF能量从板的一面传递到另一面,常用的技术是在两面都使用盲孔。可以通过将直通过孔安排在PCB板两面都不受RF干扰的区域来将直通过孔的不利影响减到最小。

有时不太可能在多个电路块之间保证足够的隔离,在这种情况下就必须考虑采用金属屏蔽罩将射频能量屏蔽在RF区域内,金属屏蔽罩必须焊在地上,必须与元器件保持一个适当距离,因此需要占用PCB板宝贵的空间。尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走内层,而且最好走线层的下面一层PCB是地层。RF信号线可以从金属屏蔽罩底部的小缺口和地缺口处的布线层上走出去,不过缺口处周围要尽可能地多布一些地,不同层上的地可通过多个过孔连在一起。

3、芯片和电源去耦

许多集成了线性线路的RF芯片对电源的噪音非常敏感,通常每个芯片都需要采用高达四个电容和一个隔离电感来确保滤除所有的电源噪音。一块集成电路或放大器常常带有一个开漏极输出,因此需要一个上拉电感来提供一个高阻抗RF负载和一个低阻抗直流电源,同样的原则也适用于对这一电感端的电源进行去耦。

有些芯片需要多个电源才能工作,因此你可能需要两到三套电容和电感来分别对它们进行去耦处理,电感极少并行靠在一起,因为这将形成一个空芯变压器并相互感应产生干扰信号,因此它们之间的距离至少要相当于其中一个器件的高度,或者成直角排列以将其互感减到最小。

4、电气分区原则

电气分区原则大体上与物理分区相同,但还包含一些其它因素。手机的某些部分采用不同工作电压,并借助软件对其进行控制,以延长电池工作寿命。这意味着手机需要运行多种电源,而这给隔离带来了更多的问题。

电源通常从连接器引入,并立即进行去耦处理以滤除任何来自线路板外部的噪声,然后再经过一组开关或稳压器之后对其进行分配。手机PCB板上大多数电路的直流电流都相当小,因此走线宽度通常不是问题,不过,必须为高功率放大器的电源单独走一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个过孔来将电流从某一层传递到另一层。此外,如果不能在高功率放大器的电源引脚端对它进行充分的去耦,那么高功率噪声将会辐射到整块板上,并带来各种各样的问题。

高功率放大器的接地相当关键,并经常需要为其设计一个金属屏蔽罩。在大多数情况下,同样关键的是确保RF输出远离RF输入。这也适用于放大器、缓冲器和滤波器。在最坏情况下,如果放大器和缓冲器的输出以适当的相位和振幅反馈到它们的输入端,那么它们就有可能产生自激振荡。在最好情况下,它们将能在任何温度和电压条件下稳定地工作。

实际上,它们可能会变得不稳定,并将噪音和互调信号添加到RF信号上。如果射频信号线不得不从滤波器的输入端绕回输出端,这可能会严重损害滤波器的带通特性。为了使输入和输出得到良好的隔离,首先必须在滤波器周围布一圈地,其次滤波器下层区域也要布一块地,并与围绕滤波器的主地连接起来。把需要穿过滤波器的信号线尽可能远离滤波器引脚也是个好方法。

此外,整块板上各个地方的接地都要十分小心,否则会在引入一条耦合通道。有时可以选择走单端或平衡RF信号线,有关交叉干扰和EMC/EMI的原则在这里同样适用。平衡RF信号线如果走线正确的话,可以减少噪声和交叉干扰,但是它们的阻抗通常比较高,而且要保持一个合理的线宽以得到一个匹配信号源、走线和负载的阻抗,实际布线可能会有一些困难。缓冲器可以用来提高隔离效果,因为它可把同一个信号分为两个部分,并用于驱动不同的电路,特别是本振可能需要缓冲器来驱动多个混频器。

当混频器在RF频率处到达共模隔离状态时,它将无法正常工作。缓冲器可以很好地隔离不同频率处的阻抗变化,从而电路之间不会相互干扰。缓冲器对设计的帮助很大,它们可以紧跟在需要被驱动电路的后面,从而使高功率输出走线非常短,由于缓冲器的输入信号电平比较低,因此它们不易对板上的其它电路造成干扰。压控振荡器(VCO)可将变化的电压转换为变化的频率,这一特性被用于高速频道切换,但它们同样也将控制电压上的微量噪声转换为微小的频率变化,而这就给RF信号增加了噪声。

5、解决噪声问题

首先,控制线的期望频宽范围可能从DC直到2MHz,而通过滤波来去掉这么宽频带的噪声几乎是不可能的;其次,VCO控制线通常是一个控制频率的反馈回路的一部分,它在很多地方都有可能引入噪声,因此必须非常小心处理VCO控制线。要确保RF走线下层的地是实心的,而且所有的元器件都牢固地连到主地上,并与其它可能带来噪声的走线隔离开来。

此外,要确保VCO的电源已得到充分去耦,由于VCO的RF输出往往是一个相对较高的电平,VCO输出信号很容易干扰其它电路,因此必须对VCO加以特别注意。事实上,VCO往往布放在RF区域的末端,有时它还需要一个金属屏蔽罩。谐振电路(一个用于发射机,另一个用于接收机)与VCO有关,但也有它自己的特点。简单地讲,谐振电路是一个带有容性二极管的并行谐振电路,它有助于设置VCO工作频率和将语音或数据调制到RF信号上。所有VCO的设计原则同样适用于谐振电路。由于谐振电路含有数量相当多的元器件、板上分布区域较宽以及通常运行在一个很高的RF频率下,因此谐振电路通常对噪声非常敏感。

信号通常排列在芯片的相邻脚上,但这些信号引脚又需要与相对较大的电感和电容配合才能工作,这反过来要求这些电感和电容的位置必须靠得很近,并连回到一个对噪声很敏感的控制环路上。要做到这点是不容易的。

自动增益控制(AGC)放大器同样是一个容易出问题的地方,不管是发射还是接收电路都会有AGC放大器。AGC放大器通常能有效地滤掉噪声,不过由于手机具备处理发射和接收信号强度快速变化的能力,因此要求AGC电路有一个相当宽的带宽,而这使某些关键电路上的AGC放大器很容易引入噪声。设计AGC线路必须遵守良好的模拟电路设计技术,而这跟很短的运放输入引脚和很短的反馈路径有关,这两处都必须远离RF、IF或高速数字信号走线。

同样,良好的接地也必不可少,而且芯片的电源必须得到良好的去耦。如果必须要在输入或输出端走一根长线,那么最好是在输出端,通常输出端的阻抗要低得多,而且也不容易感应噪声。通常信号电平越高,就越容易把噪声引入到其它电路。

在所有PCB设计中,尽可能将数字电路远离模拟电路是一条总的原则,它同样也适用于RFPCB设计。公共模拟地和用于屏蔽和隔开信号线的地通常是同等重要的,因此在设计早期阶段,仔细的计划、考虑周全的元器件布局和彻底的布局评估都非常重要,同样应使RF线路远离模拟线路和一些很关键的数字信号,所有的RF走线、焊盘和元件周围应尽可能多填接地铜皮,并尽可能与主地相连。如果RF走线必须穿过信号线,那么尽量在它们之间沿着RF走线布一层与主地相连的地。如果不可能的话,一定要保证它们是十字交叉的,这可将容性耦合减到最小,同时尽可能在每根RF走线周围多布一些地,并把它们连到主地。

此外,将并行RF走线之间的距离减到最小可以将感性耦合减到最小。一个实心的整块接地面直接放在表层下第一层时,隔离效果最好,尽管小心一点设计时其它的做法也管用。在PCB板的每一层,应布上尽可能多的地,并把它们连到主地面。尽可能把走线靠在一起以增加内部信号层和电源分配层的地块数量,并适当调整走线以便你能将地连接过孔布置到表层上的隔离地块。应当避免在PCB各层上生成游离地,因为它们会像一个小天线那样拾取或注入噪音。在大多数情况下,如果你不能把它们连到主地,那么你最好把它们去掉。

三、PCB板设计时应注意几个方面

1、电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:

(1)众所周知的是在电源、地线之间加上去耦电容。

(2)尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线》电源线》信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm。对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用)

(3)用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

2、数字电路与模拟电路的共地处理

现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。

3、信号线布在电(地)层上

在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。

4、大面积导体中连接腿的处理

在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heatshield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。

5、布线中网络系统的作用

在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。

四、高频PCB设计技巧和方法

1、传输线拐角要采用45°角,以降低回损

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层的电磁场。

这种情况下,我们管理着微带到同轴电缆之间的转换。在同轴电缆中,地线层是环形交织的,并且间隔均匀。在微带中,接地层在有源线之下。这就引入了某些边缘效应,需在设计时了解、预测并加以考虑。当然,这种不匹配也会导致回损,必须最大程度减小这种不匹配以避免产生噪音和信号干扰。

五、电磁兼容性设计

电磁兼容性是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。

1、选择合理的导线宽度

由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。

2、采用正确的布线策略

采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。

3、有效地抑制串扰

为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。

4、避免电磁辐射的布线要点

为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点:

(1)尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。

(2)时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。

(3)总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。

(4)数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。

5、抑制反射干扰

为了抑制出现在印制线条终端的反射干扰,除了特殊需要之外,应尽可能缩短印制线的长度和采用慢速电路。必要时可加终端匹配,即在传输线的末端对地和电源端各加接一个相同阻值的匹配电阻。根据经验,对一般速度较快的TTL电路,其印制线条长于10cm以上时就应采用终端匹配措施。匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。

6、电路板设计过程中采用差分信号线布线策略

布线非常靠近的差分信号对相互之间也会互相紧密耦合,这种互相之间的耦合会减小EMI发射,通常(当然也有一些例外)差分信号也是高速信号,所以高速设计规则通常也都适用于差分信号的布线,特别是设计传输线的信号线时更是如此。这就意味着我们必须非常谨慎地设计信号线的布线,以确保信号线的特征阻抗沿信号线各处连续并且保持一个常数。

在差分线对的布局布线过程中,我们希望差分线对中的两个PCB线完全一致。这就意味着,在实际应用中应该尽最大的努力来确保差分线对中的PCB线具有完全一样的阻抗并且布线的长度也完全一致。差分PCB线通常总是成对布线,而且它们之间的距离沿线对的方向在任意位置都保持为一个常数不变。通常情况下,差分线对的布局布线总是尽可能地靠近。
责编AJX

下载发烧友APP

打造属于您的人脉电子圈

关注电子发烧友微信

有趣有料的资讯及技术干货

关注发烧友课堂

锁定最新课程活动及技术直播

电子发烧友观察

一线报道 · 深度观察 · 最新资讯
收藏 人收藏
分享:

评论

相关推荐

2.4G射频天线调试入门及实战分享

主题简介及亮点 : 智能家居、物联网市场的兴起壮大,用的蓝牙、WIFI都是2.4G频段, 2.4G非
发烧友学院发表于 2018-11-01 00:00 12680次阅读
2.4G射频天线调试入门及实战分享

芯片封装或成半导体发展下一个竞技场

为应对摩尔定律的放缓,全球最大的芯片生产巨头台积电正在与谷歌等美国科技企业合作,以开发一种新的半导体....
发表于 2020-11-25 18:33 30次阅读
芯片封装或成半导体发展下一个竞技场

移动GPU或成主流趋势,IMG如何赋能国产芯片?

集成电路产业是信息技术产业的核心,在支撑社会经济发展方面意义重大。而半导体知识产权(Silicon ....
发表于 2020-11-25 18:00 82次阅读
移动GPU或成主流趋势,IMG如何赋能国产芯片?

苏州固锝:IC产线持续满载,产量及需求持续增加

11月25日,苏州固锝在互动平台上表示,公司在工业控制、5G通讯等行业按规划在替代中。第三代半导体S....
发表于 2020-11-25 17:29 101次阅读
苏州固锝:IC产线持续满载,产量及需求持续增加

台积电:3nm芯片将是2022年最先进的芯片工艺

随着台积电5nm工艺逐步走入正轨,其也开始了下一段征程,近日,外媒爆料称,台积电正打算于2022年下....
发表于 2020-11-25 17:29 85次阅读
台积电:3nm芯片将是2022年最先进的芯片工艺

iPhone与安卓手机最大的不同是什么?

今年的iPhone12可谓问题最多的iPhone,上市一个月已被用户投诉出现诸多问题,然而全球各地却....
发表于 2020-11-25 17:21 83次阅读
iPhone与安卓手机最大的不同是什么?

RFID在工业物联网中能够提供什么输入?

推动全球工业环境中物联网系统增长的一个因素是射频识别(RFID)和其他传感器技术的发展。尽管射频识别....
发表于 2020-11-25 17:18 90次阅读
RFID在工业物联网中能够提供什么输入?

射频通信系统之接收机的三大结构

关于接收机结构我们从最传统的超外差结构开始介绍,超外差结构能提供非常好的性能,但这种结构需要大量分离....
发表于 2020-11-25 17:08 54次阅读
射频通信系统之接收机的三大结构

苹果要把高效能低功耗的ARM架构,真正用到的PC...

在移动端,因为谷歌开源的Android和苹果自研自用的iOS这两种操作系统,又划分出了安卓和苹果阵营....
发表于 2020-11-25 16:51 70次阅读
苹果要把高效能低功耗的ARM架构,真正用到的PC...

开关电源的维修方法及基础知识

开关电源,又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。民熔开关电源利用....
发表于 2020-11-25 16:40 33次阅读
开关电源的维修方法及基础知识

富士康计划为谷歌服务器组装关键零件

据外媒报道,据知情人士透露,苹果代工厂商富士康获得了谷歌服务器关键部件的制造合同,并计划利用威斯康星....
发表于 2020-11-25 16:35 108次阅读
富士康计划为谷歌服务器组装关键零件

求助各位老师!ADC0809数模转换芯片有替代产品吗?

8位数模转换芯片 28脚
发表于 2020-11-25 16:33 41次阅读
求助各位老师!ADC0809数模转换芯片有替代产品吗?

如何实现汽车芯片的国产替代?

近日,由国家新能源汽车技术创新中心牵头,中国汽车芯片产业创新战略联盟正式成立。
发表于 2020-11-25 16:12 119次阅读
如何实现汽车芯片的国产替代?

得一微:已处于国产存储控制芯片的领先地位

2021中国IC风云榜“年度新锐公司”征集现已启动!入围标准要求为营收过亿元的未上市、未进入IPO辅....
发表于 2020-11-25 16:11 119次阅读
得一微:已处于国产存储控制芯片的领先地位

苹果M1 Mac中最便宜的mini性能最强?

不知道有多少人和我一样在双十一的凌晨两点。观看了苹果直播的新品发布会。以前都没看过苹果的直播,这是第....
发表于 2020-11-25 16:10 168次阅读
苹果M1 Mac中最便宜的mini性能最强?

超材信息获得PreA-2轮融资,由武岳峰资本投资

超材信息成立于2017年,注册资本为588.236万元。其股东包括超材乾信、北京超材、红山科技、京仪....
发表于 2020-11-25 16:07 65次阅读
超材信息获得PreA-2轮融资,由武岳峰资本投资

基于微流控技术的器官芯片用于纳米药物研究的新型工...

目前新药的研发周期平均在12.5年左右,且据FDA的数据报告显示,经过动物实验验证安全有效的药物中,....
发表于 2020-11-25 15:59 70次阅读
基于微流控技术的器官芯片用于纳米药物研究的新型工...

苹果将生产力属性赋予了这一代iPad Air

iPad Air 最初的重点,全在「Air」之上,它比普通 iPad 更轻盈,不过对于原本就较轻的i....
发表于 2020-11-25 15:58 102次阅读
苹果将生产力属性赋予了这一代iPad Air

紫光展锐5G终端切片目标方案有何优势?

近日,中国移动联合展锐、中兴通讯等产业链合作伙伴共同完成了业界首个5G终端切片目标方案的应用演示。
发表于 2020-11-25 15:57 93次阅读
紫光展锐5G终端切片目标方案有何优势?

苹果M1 Mac在实际应用中的表现如何?

随着全新的 Mac 产品陆续来到用户手中,评测也陆续公开,M1 芯片的实力已经多方位地展示在了我们面....
发表于 2020-11-25 15:51 116次阅读
苹果M1 Mac在实际应用中的表现如何?

M1芯片MacBook Pro上手体验

对于这个M1芯片,大家最关注的应该就是性能了。先来看看跑分情况。 Geekbench下,单核1705....
发表于 2020-11-25 15:42 236次阅读
M1芯片MacBook Pro上手体验

中国打破美国垄断芯片设计工具领域的局面有望变成现...

自去年9月以来,三家中国初创公司均有来自美国Synopsys和Cadence两家全球顶尖的EDA厂商....
发表于 2020-11-25 15:37 201次阅读
中国打破美国垄断芯片设计工具领域的局面有望变成现...

苹果自研芯片M1X将在16英寸MacBook P...

根据 @LeaksApplePro 爆料称,苹果下一代自研芯片,可能是 M1X,名字还没有最终确定。....
发表于 2020-11-25 15:35 179次阅读
苹果自研芯片M1X将在16英寸MacBook P...

Mythic公司推出业界首款模拟矩阵处理器M11...

说到人工智能硬件,我们向来事无巨细。WikiChip密切关注的一家公司是Mythic。这家公司还没有....
发表于 2020-11-25 15:27 129次阅读
Mythic公司推出业界首款模拟矩阵处理器M11...

中国液晶面板产业的史诗性崛起

如果没有王东升与李东生,中国大陆的液晶面板产业或许还会处在日韩与台湾企业的垄断之下,那么中国的消费电....
发表于 2020-11-25 15:27 67次阅读
中国液晶面板产业的史诗性崛起

中关村示范区在5G等方面已取得一系列进展

在近日北京举行的中关村5G创新应用大赛上,中关村管委会二级巡视员刘航在致辞中表示,中关村示范区在5G....
发表于 2020-11-25 15:14 118次阅读
中关村示范区在5G等方面已取得一系列进展

电源管理芯片和移动应用结合必然颠覆传统PC模式

你是否有注意到传统PC已经许久没有更新过了?除了简单的网页浏览和日常办公,人们更习惯于拿起手机处理事....
发表于 2020-11-25 15:13 131次阅读
电源管理芯片和移动应用结合必然颠覆传统PC模式

英特尔自研芯片的新战略解读

英特尔(Intel Corp.)比任何一家公司都更有资格代表「硅谷」这个名称中富有历史感的「硅」字。....
发表于 2020-11-25 15:10 172次阅读
英特尔自研芯片的新战略解读

苹果M1芯片如此厉害的三个原因分析

苹果今年的发布会三部曲终于落下了帷幕。这场压轴大戏上,发布了苹果自研芯片Apple Silicon的....
发表于 2020-11-25 15:05 148次阅读
苹果M1芯片如此厉害的三个原因分析

友恩U6235电源芯片:寻求行业新的增长点

LED驱动电源芯片质量的稳定性对LED照明灯具的寿命起到关键性作用。变幻莫测的市场环境下,友恩半导体....
发表于 2020-11-25 15:02 66次阅读
友恩U6235电源芯片:寻求行业新的增长点

现在买iPhone11系列落伍吗?

iPhone 发展到现在已经13个年头了,你对每一代 iPhone 都了解吗,不妨来回顾一下这些年 ....
发表于 2020-11-25 14:47 261次阅读
现在买iPhone11系列落伍吗?

TriLumina先进的倒装芯片、背发射VCSE...

传统VCSEL阵列都安装在基座上,并利用键合线进行电气连接。TriLumina的板载VCSEL器件结....
发表于 2020-11-25 14:40 78次阅读
TriLumina先进的倒装芯片、背发射VCSE...

华灿Mini芯片亮相京东方全球创新伙伴大会

01 乾照光电募资15亿元用于扩产 乾照光电向特定对象发行A股股票预案,拟募集资金总额不超过15亿元....
发表于 2020-11-25 14:40 111次阅读
华灿Mini芯片亮相京东方全球创新伙伴大会

苹果M1 Mac芯片被砍了一半?

一般来说,新品发售以后,各种拆解结构就开始动手了。 像是 iPhone12 系列发布后,拆解网站 i....
发表于 2020-11-25 14:27 189次阅读
苹果M1 Mac芯片被砍了一半?

中兴通讯发布绿色5G白皮书,通过创新实现节能降耗...

11月24日,中兴通讯与全球领先的电信、媒体、和技术(TMT)研究机构GSMA智库(GSMA Int....
发表于 2020-11-25 13:54 108次阅读
中兴通讯发布绿色5G白皮书,通过创新实现节能降耗...

华灿光电Mini LED芯片产品在各细分市场占有...

京东方全球创新伙伴大会·2020(BOE IPC·2020)在北京盛大开幕,华灿光电作为京东方战略合....
发表于 2020-11-25 13:53 100次阅读
华灿光电Mini LED芯片产品在各细分市场占有...

台积电正按计划推进3nm工艺在2022年下半年量...

11月25日消息,据国外媒体报道,在今年一季度及二季度的财报分析师电话会议上,台积电CEO魏哲家透露....
发表于 2020-11-25 13:52 70次阅读
台积电正按计划推进3nm工艺在2022年下半年量...

iPhone12 mini屏幕虽小,但功能加倍性...

在大屏手机的流行的时代里面,Apple不走寻常路推出这款只有5.4英寸的屏幕iPhone 12 mi....
发表于 2020-11-25 12:21 215次阅读
iPhone12 mini屏幕虽小,但功能加倍性...

荣耀V40系列麒麟9000处理器版本被砍

前几天华为将荣耀打包出售,这则消息在网上引起了很多网友的热烈讨论,这个时候大家都觉得荣耀最大的问题被....
发表于 2020-11-25 12:08 110次阅读
荣耀V40系列麒麟9000处理器版本被砍

4A开关升降压转换器TPS63020的主要特性与...

德州仪器 (TI) 推出的4 A 开关升降压转换器,效率高达 96%。该 TPS63020 电源管理....
发表于 2020-11-25 12:02 75次阅读
4A开关升降压转换器TPS63020的主要特性与...

半导体封装市场将追随芯片产业增长步伐,2024年...

据媒体报道,国际半导体产业协会(SEMI)与TechSearch International共同发表....
发表于 2020-11-25 11:52 153次阅读
半导体封装市场将追随芯片产业增长步伐,2024年...

华为对外投资案例分析 华为对外投资的公司增加宁波...

天眼查APP显示,11月23日,宁波润华全芯微电子设备有限公司发生股东股权变更,新增华为旗下哈勃科技....
发表于 2020-11-25 11:47 167次阅读
华为对外投资案例分析 华为对外投资的公司增加宁波...

如何评价苹果自研M1芯片的性能?

自从苹果发布了几个2020款笔记本之后,就成功吸引了无数人的目光,有的觉得自己买Intel笔记本过时....
发表于 2020-11-25 11:45 434次阅读
如何评价苹果自研M1芯片的性能?

请问如何允许芯片在进入调试模式时不被重置?

如何允许芯片在进入调试模式时不被重置
发表于 2020-11-24 06:40 0次阅读
请问如何允许芯片在进入调试模式时不被重置?

LC5200离线式LED驱动集成电路

特点和优点 电源电压,VBB,最大450 V,建议25至400 V;注意:最低电压可能会有所不同取决于LED负载 输出电...
发表于 2020-11-23 16:57 101次阅读
LC5200离线式LED驱动集成电路

高通会是今年的射频前端市场冠军吗?

高通或将夺得射频前端市场的冠军
发表于 2020-11-23 14:20 0次阅读
高通会是今年的射频前端市场冠军吗?

基于超低功耗架构设计的智能手表平台W307

近期,紫光展锐新一代智能手表平台 W307发布,基于超低功耗架构设计,采用亚米级高精度定位方案,高集成 4G 全网通,...
发表于 2020-11-23 14:09 0次阅读
基于超低功耗架构设计的智能手表平台W307

解决射频电路印制电路板的抗干扰设计的办法

随着通信技术的发展,无线技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路( )的抗干扰...
发表于 2020-11-23 12:17 0次阅读
解决射频电路印制电路板的抗干扰设计的办法

ZETag云标签芯片于2021年实现产品量产

SoC 设计与应用技术领导厂商Socionext Inc.(以下“Socionext”)宣布携手纵行科技和chsor共同开发新一代低功耗、低...
发表于 2020-11-23 07:41 0次阅读
ZETag云标签芯片于2021年实现产品量产

Altera系列FPGA芯片IP核详解

发表于 2020-11-15 15:01 202次阅读
Altera系列FPGA芯片IP核详解

3A的限流芯片PW1503详解

USB限流芯片,5V输入,输出5V电压,限流值可以通过外围电阻进行调节,PWCHIP产品中可在限流范围0.4A-4.8A...
发表于 2020-11-14 09:24 332次阅读
3A的限流芯片PW1503详解