电子发烧友网 > 通信网络 > 正文

了解两端全无源的双星形纯透传直连的WDM直驱结构

2020年07月09日 10:45 次阅读

对低成本O-Band高速彩光光模块、全无源/全彩光的WDM双星形结构设计、远端无源而仅在局端增加有源保护板来实现OLP保护的新机制进行了研究。提出的创新WDM前传设备及产品方案具有可野外安装、可灵活部署、低成本、高可靠性等技术优势。

1 5G前传面临光纤资源快速耗尽的窘境

根据3GPP 5G RAN功能切分,5G重构为AAU、DU和CU多级架构,与此相对应的传送网的网络部署可分为前传、中传和回传。围绕5G新无线技术的普及使用,对前传网最本质的需求已明确为大粒度25Gbit/s的高速高效直连透传。

5G前传网络主要有分布式无线接入网(D-RAN)和集中式无线接入网(C-RAN)两种部署模式,D-RAN模式就是传统的一体化基站的部署模型,而其中新型的C-RAN又可细分为C-RAN小集中和C-RAN大集中两种部署模式。

与4G相比,5G所使用的频率更高,单基站覆盖范围较4G小很多,这意味着5G网络要达到与4G网络相同的覆盖能力就需要更多的基站以更密集的方式进行覆盖。如果大量密集的基站直接使用光纤直连来解决覆盖问题,那么就需要耗费大量的光纤纤芯资源和管孔/管道的敷设资源。

5G基站接入光缆的一个非常普通的综合业务接入区的组网情况如图1所示,一个综合业务接入区常规情况下包含2个汇聚机房,4~6个一级分纤点,6个以上二级分纤点。当综合业务接入区光缆充足、AAU和基站距离较近时,都可使用光纤直连的方式,这样可以利旧综合业务接入区光缆资源,接入方式可就近接入二级分纤点连接DU;或者就近接入二级分纤点,再经过联络光缆(配线/主干光缆)连接DU。而当已有光缆资源不能满足需求时,就需要通过新建光缆方式来连接DU。

综合1.业务接入区5G接入模型

可见,5G发展及C-RAN部署模式对于主配线光缆的最大冲击是纤芯资源消耗巨大。一般情况下,对于4G/5G基站业务,每个BBU有3个扇区,每个扇区分D频段和F频段,其中D频段设置3个载波,F频段设置1个载波,采用单纤双向光模块和D频IR压缩技术后,每个基站点需占用1×3×3=9根纤芯。若一个机房内部署10个BBU,则需要预留90根纤芯。对于室内分布和集客专线、家庭宽带业务,假设1个C-RAN区内有2个微网格,每个微网格内有3000户,通过测算1个C-RAN区内需要120根纤芯。

若4G基站实行RRU-BBU双路由保护机制,5G基站不实行双路由保护机制,则配线光缆纤芯需求为8×9×1+2×9×2+120=228芯,若5G也采用双路由保护,配线纤芯就需要348芯。这样一来,配线光缆就需要布放288芯以上的光缆,主干光缆就需要采用432芯以上的光缆了。在考虑到并非所有路由都需要保护的情况下,主干光缆均采用288芯光缆,围绕1~2个综合业务机房进行建设,覆盖2~3个C-RAN区。若主干光缆采用432芯光缆,可覆盖3~4个C-RAN区。

从以上分析可以看出,5G前传网络建设对光缆资源的挑战巨大。另外,针对C-RAN大集中的应用场景,如果仍采用光纤直连,传输距离也成为无法逃避的大问题,因此,为降低光缆建设成本,节省光纤消耗,就必须使用波分复用(WDM)设备来解决前传长距离传输和光纤耗尽问题。

2 全无源O-Band CWDM的创新技术

了解两端全无源的双星形纯透传直连的WDM直驱结构

2.1 低成本的O-Band CWDM彩光光模块

前传网除了光纤以外,还需要使用CPRI/eCPRI接口的光模块或光设备。由于5G前传是室外应用,因此需要可以野外安装的工业级(-40°C~85°C)光模块。目前为实现更宽温度范围的光模块技术方案主要有:(1)商业级(0~70°C)25Gbit/s直调(DML)芯片+带制冷封装方式,优点是对激光器芯片要求低,缺点是增加了功耗与成本;(2)直接采用工业级的25Gbit/s DML芯片,优点是封装简单、功耗成本低,缺点是工业级激光器芯片工艺实现困难(如掺铝量子阱材料生长)。

针对25Gbit/s的高速光模块,各主流器件和光模块厂家都在尝试基于10G波特率的DML(直接调制激光器)工温芯片,以超频方式来低成本地实现25Gbit/s的高速收发光模块。其基本思路都是利用更复杂的电调制解调技术来降低模块对激光器物理带宽的要求或减少激光器的使用数量来降低成本的。一种方法就是利用PAM-4(四电平脉冲幅度调制)技术实现1个周期传输2bit信息,相对于NRZ(非归零码)的1个周期传输1bit信息来说倍频了一倍。另外就是使用更高阶的调制技术或多种调制技术混合使用,例如华为采用离散调音技术(DMT)来实现单波100Gbit/s 的光模块。

目前市场上可成熟规模使用的、符合O-band CWDM中心波长分配表(如表1)要求的前6个波的25Gbit/s光模块最新的市场价格已降低到400元/个的水平,而同样速率的工作于C-band的光模块价格却仍在3000元/个以上,由此可见使用O-band CWDM光模块构建的波分系统的成本优势是非常明显的。

我们创新设计的全无源、有保护的O-band CWDM(Coarse Wavelength Division Multiplexing)型5G前传产品,就采用CWDM在O-band的前6个工作波长的彩光光模块,并以这6个波长为单位进行堆叠,通过模块化设计,可以提供超低成本的6波、12波、18波、24波等5G前传网光模块解决方案。

O-band CWDM的中心波长分配

采用标准化、模块化架构,使得设备可实现低成本灵活配置,例如实现一个基站一根光纤的前传多方向汇聚。这种配置模式完全匹配5G前传需要(S111配置需要6个光方向收发),能够以6波为单位将分散在多个基站位置点的高速光连接在综合业务接入点进行多方向的大汇聚、大集中,是构造C-RAN大集中的最佳方案。

另一方面,可以共享在数据中心商用规模巨大的、成熟的光模块产业链,可以通过PIN/APD(光电二极管/雪崩二极管)、DML/EML(直接调制激光器/电吸收调制激光器)、NRZ/PAM4(非归零码/脉冲幅度4电平调制)、CWDM/LWDM(粗波分复用/局域网波分复用)、波片/AWG(阵列波导光栅)、PIC/PLC(光子集成电路/平面波导电路)、BiDi/非BiDi(单纤双向)、灰光/彩光、室内/室外等标准光模块的灵活选择配置,来满足各种速率、各种传输距离和各种线路功率预算的指标要求。

2.2两端全无源的低成本双星形WDM架构

5G前传的高速光纤连接需求让运营商普遍面临接入光缆匮乏的痛点,而已在干线和核心网络广泛使用的波分复用(WDM)系统能够在单根光纤上就可非常简单地提供40波,甚至多达96波的波长通道。因此我们完全可以顺理成章地将WDM技术引入到前传网中,让WDM为前传网,简单、快速地提供大量波长通道(相当于提供了大量的虚拟光纤),这样就可以大大节约前传网的接入光纤使用量,解决运营商接入光纤匮乏的痛点问题。

针对光纤直驱需要消耗大量光纤资源的问题,我们提出了面向5G前传的低成本的新型波分复用(WDM)设备的原理架构。为了降低成本,该创新方案首先采用无中继放大、无DCM(色散补偿模块)、无中间OADM(光分插复用器)跳接的设计思路,核心架构采用两端全无源的双星型组网拓扑。

两端全无源的双星形纯透传直连的WDM直驱结构

在两端全无源的双星形波分复用(WDM)方案中,在AAU一侧直接采用彩光模块( 6/12/18波)和无源合分波器件,无源合分波器不需要带电工作,完全可以部署在野外的分纤箱、接头盒、光交箱等处。在基带站点DU侧,也全部采用彩光模块,由无源合分波器进行波长复用/解复用,实现AAU到DU对应波长的连接。

该方案的突出特点就是在线路侧只需一根工作纤芯,对主干光纤资源消耗极低;而且远端系统无需供电,具备室外部署能力。可以实现点到点、环网、星型和链型等多种组网场景需求。但该方案有一个麻烦点就是每个汇聚方向所使用的波长必须要按固定顺序排列,两端所使用的光模块是一一对应的,因此需要全WDM系统统一规划。
 

前传WDM双星形直驱设备是典型的点对点的拓扑结构,它去除掉了ONU(光网络单元)设备和OLT(光线路终端)设备,也让OTN(光传送网)、PTN(分组传送网)、SPN(切片分组网)等设备的电层处理成为多余。

WDM双星形结构的上下行传输均使用独立的、不同颜色的透明波长通道,不需要进行任何专门的MAC层协议处理,通道之间不需要带宽的动态分配,故系统的复杂度大大降低,传输效率也得到了大幅提高。在提供更高带宽的高速直连通道的同时,传输时延也是所有前传方案中最低的。

两端全无源的彩光前传波分系统可以实现免连线、免规划和免维护。使用简单可靠的低成本无源系统来解决点对点传输,减少了大量的有源设备,避免了由于OTDR等有源设备的高插入损耗对光纤线路等的测量限制,因此可以免去复杂繁琐的运维管理,真正实现免维护和免管理的省心服务。

2.3能保持远端无源的OLP保护机制创新

在传统的不使用OTN帧结构的有源WDM系统中,为了应对风险实现自愈能力,一般通过OLP(OpTIcal Line ProtecTIon,光线路保护)功能,在工作线路失效时将工作线路自动切换到保护线路(光缆)上,以保证业务不发生中断,如图3所示。

OLP保护主要分为两种类型:1+1保护方式和1:1保护方式。OLP 1+1保护主要是采用双发选收的保护方式,因此倒换时间快、稳定性好;1:1的OLP保护方式主要是采用选发选收的保护方式,需要在两端交互APS自动保护倒换协议信息来协调系统两端的保护倒换动作,因此倒换时间稍慢。从上面的论述我们不难发现,这两种OLP模式都必须要求两端设备是有源的。那么,如果我们想要把这种OLP保护手段用于前传网络就要面临必须在室外的天线一侧给WDM设备提供电源的巨大压力,这也同时说明传统的具有OLP功能的有源型WDM设备是无法在野外部署的。

有源WDM系统的OLP保护倒换方式

针对传统的有源波分方案需要供电而无法野外安装的问题,以及传统的纯无源波分方案不具有任何的保护措施这样的不足,我们创新性地提出了面向5G前传的可在保持远端无源特性的情况下,仅仅通过局端增加有源保护板卡即可实现端到端全彩光OLP保护功能的新机制。如图4所示,局端侧采用有源保护板卡,远端侧仍保持为无源状态,除了有源保护板外两端是全无源全彩光的,这样非常便于部署和维护,同时满足高可靠性,大大降低5G建设的综合成本。既能极大程度缓解光纤资源的压力,又能兼顾成本、管理和保护优势,助力运营商低成本、高带宽和快部署5G前传网。

全无源、全彩光、带保护的O-band CWDM前传设备工作原理

面向5G前传全新设计的创新型O-band CWDM前传传输系统的保护方案是一种全新的OLP保护机制。如图4所示,在局端使用选发选收。在远端使用并发并收的模式,发送光信号经过主、备用线路同时传输到对端,而并收是根据接收到的两路信号的功率,选择接收一路信号。一旦主用线路的光纤发生故障造成通信质量下降时,主用线路的接收端检测到信号的功率下降或失效后,自动将传输信号从主用线路切换到备用线路。该方案最大的优势就是保持了远端波分复用设备的无源特征,在获得无源系统的成本优势的同时又解决了光层的线路保护问题。

该创新方案在保持系统端到端无源的基础上,仅通过增加有源保护板就可支持OLP 保护功能;基于LOS告警触发,无需信令交互,支持对各通道的收发光功率的监测功能,易于故障定位与维护;OLP保护功能支持热插拔,可根据应用场景选配;保护板取电方式灵活多样;支持SNMP、Web等多种图形化界面管理,提供电信级网络管理与保护功能;全无源保护方案可以实现低时延,纯物理传输,符合5G前传网对时延要求小的特性。全无源保护方案造价低,有利于运营商运维要求,对全网可以实现可视化管理。

3 O-band CWDM带OLP保护的前传设备应用方案

为了减少在CU/DU成规模大集中的C-RAN模型组网情况下,一旦发生光缆中断的情况,将会很大范围地影响到下连的AAU站点的正常工作,同时为了提升5G面向自动驾驶、企业应用等综合业务网络的高可靠性,采用本文提出的全无源、全彩光、带保护的前传WDM创新方案就可提供基于在物理上隔离的不同光缆路由的光层OLP保护功能,保护倒换时间小于20ms,大大地提升了前传网络的可靠性;远端系统无需供电,具备室外部署能力;可以实现点到点、环网、星型、链型等多种组网需求,适用于以下业务场景:

(1)在综合业务接入区光缆紧张、基站需通过多段主干配线光缆连接AAU、且AAU和基站距离较远时。

(2)在光纤资源匮乏地区,无管道资源,无条件新敷设光纤。

(3)受工期限制较大时,可作为应急方案临时解决光纤问题。

(4)要求提升5G前传网络的可靠性、可管理性和可运维性的环境。

全彩光带保护的WDM前传设备的双路由保护典型应用该方案在实际组网中的保护应用场景如图5所示,采用全无源、全彩光、带保护的前传WDM创新方案进行简单双星型组网;AAU侧采用无源WDM设备和彩光模块,AAU侧无源合分波器复用多个波长进行WDM传输以节省光纤资源;局端BBU&DU侧部署OLP有源保护板卡,提供保护和监控的高可靠性能力。

该系统的WDM设备采用模块化架构,支持所有功能单元热插拔,利于局端灵活部署及后期扩容需求;通过有源OLP保护板卡实现对各通道的收发光功率的监测功能和光层保护功能,实现前传网络的可管理性和可运维性。

4 小结

由于光纤直驱方案对光缆纤芯消耗巨大,面临光缆资源紧张、纤芯资源不足、新建光缆施工困难(市政协调、施工周期)、单机房覆盖区域增大,网络风险性增加等问题。同时,传统的无源WDM波分系统虽然无需供电,还省去了不必要的电层协议处理,可以低成本、迅速、大量虚拟出几十个波长的光通道,但其被广泛诟病的最大问题是不具有线路保护和监控能力。再者,传统的有源WDM波分系统虽然可实现电信级保护倒换及维护管理,但端到端都需要供电,需要在机房内部署。有鉴于此,本文按照既保持无源波分的低成本特性又克服其不具有保护能力的研发思路,创新性地提出了低成本的全彩光全无源O-band CWDM系统及半无源OLP保护创新方案,无疑会为5G前传网建设带来更加优化的技术方案和设备产品选择。
       责任编辑:pj

下载发烧友APP

打造属于您的人脉电子圈

关注电子发烧友微信

有趣有料的资讯及技术干货

关注发烧友课堂

锁定最新课程活动及技术直播

电子发烧友观察

一线报道 · 深度观察 · 最新资讯
收藏 人收藏
分享:

评论

相关推荐

对话FPGA原厂——既聊技术,也谈市场

感谢大家对Mil往期FPGA直播的支持!最后一期,大家要继续加油哟!关于直播中,Mill老师有提到的FPGA众筹,为大家
发烧友学院发表于 2019-05-22 00:00 10711次阅读
对话FPGA原厂——既聊技术,也谈市场

爱立信联手泰尔终端实验室,推进符合行业标准和运营...

智能产品在使用爱立信测试服务之后,不仅能确保稳健、安全的网络性能,而且因为有爱立信实验室的专业支持,....
发表于 2020-07-09 10:53 0次阅读
爱立信联手泰尔终端实验室,推进符合行业标准和运营...

千兆网络成为下一个“小目标”

在智慧家庭方面,中国联通更侧重泛智能终端融合,主推“1+4+X”模式,其中1代表千兆接入能力,4代表....
发表于 2020-07-09 10:50 0次阅读
千兆网络成为下一个“小目标”

5月底韩国5G用户已超过687万,资费比4G高出...

据央视财经报道,韩国是全球首个5G商用的国家,调查显示,截至5月底,韩国5G用户已超过687万,占所....
发表于 2020-07-09 10:42 3次阅读
5月底韩国5G用户已超过687万,资费比4G高出...

5G R16标准将催生新产业生态,为C-V2X提...

“从标准的角度,R16完成了NR-V2X的第一个版本的标准化工作,是C-V2X的重要里程碑,给出了C....
发表于 2020-07-09 10:42 11次阅读
5G R16标准将催生新产业生态,为C-V2X提...

江西省5G网络实现了全省地市级以上主城区连续覆盖

为抢抓新基建发展机遇,推进江西省5G建设和发展,江西省通信管理局提前谋划精心部署,于2019年初启动....
发表于 2020-07-09 10:42 4次阅读
江西省5G网络实现了全省地市级以上主城区连续覆盖

山西将通信基础设施建设纳入建筑物的必备配套

去年,山西省发布《关于印发山西省加快5G 产业发展的实施意见和若干措施的通知》。预计到2020年底,....
发表于 2020-07-09 10:38 3次阅读
山西将通信基础设施建设纳入建筑物的必备配套

基于沉浸式体验和物联网的更多超能应用挑战

啥?上过珠穆朗玛峰?没错!男生说的这款5G手机荣耀X10今年曾携手中国登山队成功登顶珠峰,并且实现珠....
发表于 2020-07-09 10:33 16次阅读
基于沉浸式体验和物联网的更多超能应用挑战

广电推动700MHz清频以及广电5G实验网/基站...

刚刚正式冻结不久的Rel-16版本中,特别是对于5G定位和定位服务、UE无线功能信令优化、5G卫星接....
发表于 2020-07-09 10:29 12次阅读
广电推动700MHz清频以及广电5G实验网/基站...

ARM芯片将是智能家居设备的主要选择之一

不过需要说明的是,很多人并不知道ARM本身并不制造这些处理器。它只是向高通、联发科、三星、苹果、华为....
发表于 2020-07-09 10:08 47次阅读
ARM芯片将是智能家居设备的主要选择之一

基于Nibiru产品及技术推出的Creator+...

Nibiru Creator虚拟展会可用于构建AR/VR云上展会。可在疫情等特殊情况下,实现展会等活....
发表于 2020-07-09 10:06 14次阅读
基于Nibiru产品及技术推出的Creator+...

可协助5G发展的技术 激子行为

据俄科院西伯利亚分院网站报道,该分院计算数学、数学地质物理所、半导体物理所会同德国保罗—德鲁德固态电....
发表于 2020-07-09 09:41 18次阅读
可协助5G发展的技术 激子行为

5G网络和其他技术相结合将改变我们的生活

5G技术的高速稳定的网络链接,和其他技术相结合将让我们的生活发生翻天覆地的变化。
发表于 2020-07-09 09:34 52次阅读
5G网络和其他技术相结合将改变我们的生活

华为智能手机第二季度超越三星 华为鸿蒙系统布局...

编者按:外媒最新晓晓,华为在第二季度手机出货量超越三星。 据比亚迪官方表示, 华为5G技术将应用于车....
发表于 2020-07-09 09:17 225次阅读
华为智能手机第二季度超越三星  华为鸿蒙系统布局...

通宇通讯提高陶瓷滤波器的良品率

据通宇通讯的官方网站显示,公司创立于1996年,地处广东省中山市火炬高技术产业开发区,主要从事移动通....
发表于 2020-07-09 09:15 32次阅读
通宇通讯提高陶瓷滤波器的良品率

5G市场争夺 各厂商的优势分析

5G 的想象空间让参与者们不得不「竭尽所能」,去争夺每一份合同。爱立信总裁&CEO 鲍毅康觉得,未来....
发表于 2020-07-09 09:04 19次阅读
5G市场争夺 各厂商的优势分析

华为为巴西部署5G 将延迟数年

据国外媒体报道,华为网络安全与解决方案主管Marcelo Motta周一表示,如果限制(Curtai....
发表于 2020-07-09 08:55 46次阅读
华为为巴西部署5G 将延迟数年

AI,5G带来新拐点解析

“人工智能、5G、智能边缘等转折性技术加速突破和融合,将成为智能世界的新型基础设施。”
发表于 2020-07-09 08:52 54次阅读
AI,5G带来新拐点解析

关于AI芯片的核心竞争力

如果将 AI 的发展比作一个人的成长过程,在我看来目前整个AI产业的发展处于童年到青年阶段。一方面,....
发表于 2020-07-09 08:34 79次阅读
关于AI芯片的核心竞争力

全球首颗高精度3D-AI双引擎SOC芯片进入最终...

从原子的物理世界到0和1的数字世界,3D视觉“感知智能”技术是第一座桥梁。我国放量增长的工业级、消费....
发表于 2020-07-09 08:26 100次阅读
全球首颗高精度3D-AI双引擎SOC芯片进入最终...

发挥5G网络效能,还需要什么?

在5G良好开局之下,即使没有疫情发生,今年也是5G发展的关键之年,按照原计划,2020年要把5G部署....
发表于 2020-07-08 17:48 287次阅读
发挥5G网络效能,还需要什么?

进一步推进5G终端产业发展的几项建议

鼓励5G终端企业通过产业联盟等形式进行交流合作,构建开放融合、软硬协同的产业生态。依托5G差异化场景....
发表于 2020-07-08 17:41 255次阅读
进一步推进5G终端产业发展的几项建议

5G远程医疗为医疗行业数字化转型提供新手段

远程医疗对网络的需求主要包括大带宽与低时延两个方面。基于5G的增强型移动超高带宽特性,医院未来可用于....
发表于 2020-07-08 17:37 199次阅读
5G远程医疗为医疗行业数字化转型提供新手段

R16版本对网络切片功能进行了增强

由于R16将以更快的上传及下载速度增强独立组网的5G网络,并为V2X和工业物联网部署定义标准。因此,....
发表于 2020-07-08 17:31 62次阅读
R16版本对网络切片功能进行了增强

工信部发布中低频段5G系统设备射频技术要求

为保障我国700MHz、2600MHz、3300MHz、3500MHz和4900MHz频段5G与其他....
发表于 2020-07-08 17:20 115次阅读
工信部发布中低频段5G系统设备射频技术要求

人工智能是智能网联汽车发展的基础

近年来的发展热门产业,例如5G、特高压输电、城际高速铁路和城际轨道交通、新能源汽车充电桩、大数据中心....
发表于 2020-07-08 17:13 594次阅读
人工智能是智能网联汽车发展的基础

“新基建”将助推安防行业产业结构升级,2019年...

经过长期发展,目前我国智能安防在传统安防行业发展地域代表性的基础上形成了以电子智能安防产品生产企业聚....
发表于 2020-07-08 17:11 137次阅读
“新基建”将助推安防行业产业结构升级,2019年...

云端机器人能做什么?

说起云端机器人,这个产业从开始到发展也不过才10年时间。最早在Humanoids 2010 会议上,....
发表于 2020-07-08 17:02 125次阅读
云端机器人能做什么?

5G车路协同“新基建”有望解决车联网当前面临两大...

智慧道路是开展智能网联汽车技术研发和应用不可或缺的重要元素。一方面,智能网联汽车在正式推向市场之前,....
发表于 2020-07-08 17:02 387次阅读
5G车路协同“新基建”有望解决车联网当前面临两大...

机器人领域涉及到微型无人机和微型机器人系统

蓬佩奥强调,美国的行动是针对中国即将出台的安全法,不是针对中国人民,但是基于中国现在将香港视为“一国....
发表于 2020-07-08 16:37 138次阅读
机器人领域涉及到微型无人机和微型机器人系统

半有源成为前传部署形态的热点,将是5G前传的未来...

数据显示,截至5月底,我国共建成5G基站逾25万个,预计到年底将会建成80万站规模,覆盖全国超过34....
发表于 2020-07-08 16:34 283次阅读
半有源成为前传部署形态的热点,将是5G前传的未来...

打造新一代云网运营系统,加速网络切片商用

近日,在“5G网络切片峰会(第三届)”上,中国电信研究院副院长陈运清发表“中国电信网络切片研究与实践....
发表于 2020-07-08 16:30 140次阅读
打造新一代云网运营系统,加速网络切片商用

中兴通讯推进5G标准演进,为我国5G新基建注入新...

北京时间7月3日,在3GPP TSG第88次会议上,5G R16标准宣布冻结,标志着5G第一个演进版....
发表于 2020-07-08 16:25 235次阅读
中兴通讯推进5G标准演进,为我国5G新基建注入新...

成都大唐推出适用于5G场景的“新型5/4”漏缆”...

作为中国铁塔的长期合作伙伴,成都大唐以无线传输领域多年的技术积累,服务经验,结合市场需求,推出满足铁....
发表于 2020-07-08 16:19 202次阅读
成都大唐推出适用于5G场景的“新型5/4”漏缆”...

5G之后 6G未来三年窗口期

5G还没规模商用,6G研发就已经启航了吗?没错,全球移动通信技术发展遵循“使用一代、建设一代、研发一....
发表于 2020-07-08 16:19 44次阅读
5G之后 6G未来三年窗口期

三星推出新5G RAN设备产品,支持运营商向开放...

据外媒报道,三星本周二宣布推出了新的5G RAN设备产品,该公司称,这些产品不仅是完全支持开放技术的....
发表于 2020-07-08 16:16 139次阅读
三星推出新5G RAN设备产品,支持运营商向开放...

Rogers通讯公司正式部署加拿大首个商用5G网...

目前,该网络使用2.5 GHz频段,尽管随着Rogers在未来几个月扩展到更多市场,该网络将扩展到6....
发表于 2020-07-08 16:09 122次阅读
Rogers通讯公司正式部署加拿大首个商用5G网...

Facebook 展示适用于轻薄 VR 耳机的全...

据外媒报道,Facebook 近日发布了一款为更薄,更轻的 VR 耳机设计的全息光学架构,预计它将出....
发表于 2020-07-08 16:02 149次阅读
Facebook 展示适用于轻薄 VR 耳机的全...

5G网络推动电动汽车行业的发展

电动汽车内的电池和电动机大约需要进行1000次焊接。对于单个EV产品,这可能每分钟生成超过50万条数....
发表于 2020-07-08 15:50 209次阅读
5G网络推动电动汽车行业的发展

崭露头角的“超级英雄”——C-V2X

为了紧跟技术创新的脚步,蜂窝技术的管理标准随着时间不断演进。V2X 最初基于数字专用短程通信(DSR....
发表于 2020-07-08 15:43 128次阅读
崭露头角的“超级英雄”——C-V2X

全球半导体晶圆市场未来五年的发展趋势

根据Technavio的分析,消费电子领域的转型从2015年到2020年推动了半导体制造业的增长。该....
发表于 2020-07-08 15:30 153次阅读
全球半导体晶圆市场未来五年的发展趋势

5G技术是迄今为止最“革命性”的网络演进

适应5G带来的变化的成本也使企业领导者心存压力。尤其是5G的运营成本是一个热门话题,五分之四(80%....
发表于 2020-07-08 15:24 161次阅读
5G技术是迄今为止最“革命性”的网络演进

MAXHUB推出智能交互式平板,国产操作系统帮助...

“国产化”是近年从国家层面到社会各行各业都十分重视的话题,比如会议信息安全、芯片技术、操作系统等多个....
发表于 2020-07-08 15:12 187次阅读
MAXHUB推出智能交互式平板,国产操作系统帮助...

赛灵思与三星联手全球 5G 商用部署

ZCU216 套件搭载了 Zynq UltraScale+ RFSoC ZCU49DR 器件,提供高....
发表于 2020-07-08 15:11 83次阅读
赛灵思与三星联手全球 5G 商用部署

大立科技:军品纵向拓展,民品多点开花

大立科技拓展军机红外光电吊舱产品,预计未来订单空间较大。近年来公司军品红外热像仪完成了从陆军单兵配套....
发表于 2020-07-08 15:08 131次阅读
大立科技:军品纵向拓展,民品多点开花

如何实现5G网络自动化?

如何实现网络自动化无论是运营商乐天、AT&T,或者互联网公司如谷歌、阿里,其全网自动化系统都是自研,....
发表于 2020-07-08 14:56 174次阅读
如何实现5G网络自动化?

5G网络技术对医疗保健行业产生的影响

4G并不总是像我们希望的那样可靠。如果您在收听播客时遇到过缓冲或剪切,那么您就会知道它的痛苦。有时候....
发表于 2020-07-08 14:49 117次阅读
5G网络技术对医疗保健行业产生的影响

全球首家量产5G介质波导滤波器的生产商

当前,随着5G基站加速建设,陶瓷介质滤波器的市场需求大幅上涨,灿勤科技就是主力受益厂商之一。报告期内....
发表于 2020-07-08 14:47 206次阅读
全球首家量产5G介质波导滤波器的生产商

生物芯片平台“博奥晶典”正式对外宣布完成新一轮股...

中国生物医学工程市场规模超过6000亿人民币,其中体外诊断行业蕴藏着巨大的发展机遇。博奥晶典是博奥生....
发表于 2020-07-08 14:44 249次阅读
生物芯片平台“博奥晶典”正式对外宣布完成新一轮股...

苏州市协诚五金制品有限公司日前已完成5000万元...

协诚五金位于苏州市相城区,主要从事5G陶瓷介质滤波器的研发、生产和销售,已取得中兴通讯一级A类供应商....
发表于 2020-07-08 14:43 131次阅读
苏州市协诚五金制品有限公司日前已完成5000万元...

5G交换机:能接入下一代无线速度的先锋设备

现在,德克萨斯大学奥斯汀分校和法国里尔大学的研究人员已经构建了一种新的组件——5G交换机,据报道,这....
发表于 2020-07-08 14:40 154次阅读
5G交换机:能接入下一代无线速度的先锋设备

关于通用无线射频芯片的功能以及特点的介绍

上海巨微独创的BLE射频前端的芯片是在巨微自主研发的BLE基带和协议栈基础上,精简开发的一系列性价比....
发表于 2020-07-08 14:38 72次阅读
关于通用无线射频芯片的功能以及特点的介绍

新型5nm超高精度激光光刻加工方法,在微纳加工领...

近日,中国科学院苏州纳米技术与纳米仿生研究所研究员张子旸与国家纳米中心研究员刘前合作,在Nano L....
发表于 2020-07-08 14:36 385次阅读
新型5nm超高精度激光光刻加工方法,在微纳加工领...

村田超小型32.768kHz MEMS谐振器

村田SCC3000系列第3代组合传感器是村田主动安全系统的新产品,通用SPI接口可减少系统供应商阶段....
发表于 2020-07-08 14:36 47次阅读
村田超小型32.768kHz MEMS谐振器

迈向更安全的5G世界

当前的进展包括为虚拟化核心网络功能进行的稳定工作,以及对他们保护网络和客户所需的安全投资的重新审查。
发表于 2020-07-08 14:36 98次阅读
迈向更安全的5G世界

一项名为用于核酸多重评估的组合阵列反应的新型检测...

这个橡胶材质的芯片只比智能手机稍大,其上有数以万计的小孔。使用CARMEN平台时,研究人员须先从样品....
发表于 2020-07-08 14:36 107次阅读
一项名为用于核酸多重评估的组合阵列反应的新型检测...

5G和 WiFi 6之战,最终结果如何?

5G授权频谱抑制了未授权Wi-Fi频谱内可能发生的潜在干扰,而这一频谱被许多其他无线技术(如蓝牙和微....
发表于 2020-07-08 14:29 184次阅读
5G和 WiFi 6之战,最终结果如何?

欧盟通过小蜂窝法规推动5G部署

欧盟委员会(EC)通过了关于小蜂窝的法规,作为推进 5G 网络部署,以及提高整个欧盟的数据容量和覆盖....
发表于 2020-07-08 14:19 38次阅读
欧盟通过小蜂窝法规推动5G部署

联通发布时空服务能力 包含融合5G、北斗、蓝牙等...

联通智能城市研究院朱常波院长通过直播的方式分享了新沃云时空服务能力,并发布了《中国联通 5G 时空服....
发表于 2020-07-08 14:14 72次阅读
联通发布时空服务能力 包含融合5G、北斗、蓝牙等...

哪位大神告诉我,这个芯片是哪家的?

哪位大神告诉我,这个芯片是哪家的?怎么都查不到!拜托...
发表于 2020-07-07 22:30 91次阅读
哪位大神告诉我,这个芯片是哪家的?

芯片型号查询

请教哪位大神给看看,这个是哪家的芯片?怎么都查不到!多谢多谢,拜托各位大神!...
发表于 2020-07-07 22:27 83次阅读
芯片型号查询

异构集成的三个层次解析

  第一层 芯片异构   芯片级别的异构性是设备包内部的异构集成,与芯片概念密切相关。我们正在建造更复杂的系统,...
发表于 2020-07-07 11:44 75次阅读
异构集成的三个层次解析

芯片设计中的低功耗技术介绍

  人们对低功耗设备和设计技术的兴趣激增。通过回顾已提出的降低功耗的技术,深入了解低功耗设计中的一些基本权衡。...
发表于 2020-07-07 11:40 68次阅读
芯片设计中的低功耗技术介绍

芯片里面100多亿晶体管是如何实现的

  如今随着芯片制程的不断提升,芯片中可以有100多亿个晶体管,如此之多的晶体管,究竟是如何安上去的呢?   这是...
发表于 2020-07-07 11:36 68次阅读
芯片里面100多亿晶体管是如何实现的

双端口SRAM如何提高系统的整体性能

SRAM 以其高速、静态的优点广泛应用于各种数字设备中,多被用作不同部件之间的缓冲,尤其在计算机体系架构中扮演着...
发表于 2020-07-06 16:26 765次阅读
双端口SRAM如何提高系统的整体性能

用LM358运算放大器 放大正弦波必须采用双电源吗?

发表于 2020-07-05 10:43 304次阅读
用LM358运算放大器 放大正弦波必须采用双电源吗?

SiFotonics高速Ge/Si接收芯片解决方案

  概述:  SiFotonics具有世界领先的高速Ge/Si接收芯片成熟解决方案,可提供10G以上高灵敏度PD、APD以及...
发表于 2020-07-03 17:20 211次阅读
SiFotonics高速Ge/Si接收芯片解决方案

电源适配器求助

求大神相助,我司有款电源适配器上面的芯片,丝印70DD,请问有谁知道型号是什么的吗? ...
发表于 2020-07-03 11:15 197次阅读
电源适配器求助

非易失性MRAM读写操作

高密度MRAM具有非常低的功率,高的读取速度,非常高的数据保留能力和耐久性,适用于广泛的应用。单元面积仅为0.04...
发表于 2020-07-02 16:33 1455次阅读
非易失性MRAM读写操作