0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > 静电防护

静电防护

+关注 0人关注

为防止静电积累所引起的人身电击、火灾和爆炸、电子器件失效和损坏,以及对生产的不良影响而采取的防范措施。其防范原则主要是抑制静电的产生,加速静电泄漏,进行静电中和等。

文章: 123
视频: 30
浏览: 47142
帖子: 16

静电防护简介

  静电防护概念electrostatic protection为防止静电积累所引起的人身电击、火灾和爆炸、电子器件失效和损坏,以及对生产的不良影响而采取的防范措施。其防范原则主要是抑制静电的产生,加速静电的泄漏,进行静电中和等。人穿非导电鞋时,由于行走等活动会产生、积蓄电荷,并可达到千伏级的电位。在毛毯上行走、脱衣等所产生最高电位可达2450伏。此时人触及其他物体会产生火花放电并受到电击。人体活动中防静电措施主要有?穿导电性鞋;工作服和内衣裤不使用化纤面料;穿混有导电性纤维或用防静电剂处理的防静电工作服;工作地面作导电化处理等。两个不同的物体相互接触时,在其界面上产生电荷移动,正、静电防护负电荷相对排列形成双电层。若将物体分离,会在两个物体上各自产生极性不同的等量电荷。

静电防护百科

  静电防护概念electrostatic protection为防止静电积累所引起的人身电击、火灾和爆炸、电子器件失效和损坏,以及对生产的不良影响而采取的防范措施。其防范原则主要是抑制静电的产生,加速静电的泄漏,进行静电中和等。人穿非导电鞋时,由于行走等活动会产生、积蓄电荷,并可达到千伏级的电位。在毛毯上行走、脱衣等所产生最高电位可达2450伏。此时人触及其他物体会产生火花放电并受到电击。人体活动中防静电措施主要有?穿导电性鞋;工作服和内衣裤不使用化纤面料;穿混有导电性纤维或用防静电剂处理的防静电工作服;工作地面作导电化处理等。两个不同的物体相互接触时,在其界面上产生电荷移动,正、静电防护负电荷相对排列形成双电层。若将物体分离,会在两个物体上各自产生极性不同的等量电荷。

  静电防护

  防静电原则对产生静电的主要因素(物体的特性、表面状态、带电历史、接触面积和压力、分离速度等)尽量予以排除;使相互接触的物体在带电序列中所处的位置尽量接近;使物体间的接触面积和压力要小,温度要低,接触次数要少,分离速度要小,接触状态不要急剧变化等。粉体、液体、气体在运输过程中由于摩擦会产生静电。因此,要采取限制流速、减少管道的弯曲。增大直径、避免振动等措施。静电防护除降低速度、压力、减少摩擦及接触频率,选用适当材料及形状,增大电导率等抑制措施外,还可采取下列措施:①接地。②搭接(或跨接)。③屏蔽。④对几乎不能泄漏静电的绝缘体用抗静电剂以增大电导率,使静电易于泄漏。⑤采用喷雾、洒水等方法提高环境湿度,抑制静电的产生。⑥使用静电消除器,进行静电中和。

  静电防护

  固体产生的静电及抑制  两个不同的物体相互接触时,在其界面上产生电荷移动,正、负电荷相对排列形成双电层。这时,若将物体进行分离,会在两个物体上各自产生极性不同的等量电荷。一般是当相互接触的两物体在“带电序列”中所居位置离得越远则产生静电的量越大。电荷的极性则根据带电序列中的相对位置而定。

  相互接触和分离过程中,物体积蓄正(+)或负(-)的过剩电荷会由于放电和传导而中和,或向空间和大地泄漏而趋向减少,这一过程称为电荷缓和。一般情况下,在产生静电的同时就开始缓和。由于凡是接触和分离的任何物体都会产生或强或弱的静电,因而,对于静电极为敏感的现代电子器件、新型火药、闪点很低的易燃、易爆气体(如在常温、常压下即能挥发的液氢等低闪点特种火箭燃料)等,只要微弱的静电即可能造成事故或火灾、爆炸,所以防止产生静电或消除静电的危害是较难的技术问题。至于由静电导致的放电作用引起生产过程中胶片感光、电子元件损坏,力学作用引起的纤维缠结和印刷纸张不齐等,也是复杂的问题。

  防止静电的原则

  防止产生静电的原则是:①对产生静电的主要因素尽量予以排除。影响静电产生的主要因素有:物体的特性;物体的表面状态;物体的带电历史;接触面积及其压力;分离速度。②应参照表3所示的带电序列,使相互接触的物体在带电序列中所处的位置尽量接近。③使物体间的接触面积和压力要小,温度要低,接触次数要少,分离速度要小,接触状态不要急剧变化。静电防护

  粉体产生的静电及抑制

  粉体在空气输送、皮带输送或过筛过程中,会因粉体间或粉体与管壁间的摩擦而产生静电。因此:①管道内输送速度不应超过某一限值,管道直径应不小于某一最小值。管内不得设有网、格等妨碍输送并产生静电的物体。粉体的大小和形状应进行优选。②尽量减少管路的弯曲和收缩;避免风速和输送量的急剧变化。③应采用适当的空气振动等措施,对管壁内表面进行定期清扫和检修,防止粉体的堆集。④输送管道应尽量使用导电性材料制作,并将其接地。⑤应优选螺旋叶片的形状和螺旋的转数上限;应避免传送带发生振动或由于输送量失当而产生异常振动,且不应使粉体悬浮和飞散。⑥在斗式输送中,料斗和漏斗的壁面斜度应接近于垂直,以减少摩擦面积;斗壁应不使粉体落下过程受到扰乱;应定期进行清扫;在料斗上尽量不安装金属制滑动固定器。⑦应优选粉体的大小和形状,以及料斗的材质,使静电尽量减少。⑧料斗和漏斗等应尽量使用导电性材料,并将其接地。

  静电防护

  静电防护

  液体产生的静电及抑制

  液体在管路输送过程中,或流过软管时,由于液体间的摩擦,或由于液体与泵发生摩擦而产生静电。在其他条件相同时,静电与流速的1.8~2次方成比例。为限制静电,应注意:①烃类油料的流速不应超过表4中所列数值。②在输送能力相同的条件下,应将配管和软管的直径加大,将流速减小。③不应有湍流或急剧变化的输送状态,配管应尽量减少弯曲和收缩的部分,配管内壁应光滑。管内不要装设金属网、突出物等。过滤器应尽量设置于流源侧。④在任何局部和任何时间内流速都不应有急剧变化,输送初期和终了时应控制在小的流速,中期流速不得超过规定值。⑤液体中不得混入空气、水、灰尘和氧化物(锈等)等杂物。⑥应在配管和软管的终端部装设直径大的、减小流速用的缓和管段和缓和罐等。⑦用油轮、罐车、油罐汽车、罐和其他容器输送液体时,应注意由于罐的振动,液体与器壁摩擦而产生静电。输送时移动速度不应急剧变化,应尽量匀速移动;在罐内应设隔板加以隔开,不应使液体起波浪或飞溅;液体中不得混入杂物;罐的内部应定期清扫。

  气体产生的静电及抑制

  气体在流动和喷出过程中,会因高压空气中含有压缩机油和因压缩产生的凝结水雾,以及管锈、灰尘等的粒子流动于管内,或由开口部喷出时,粒子与壁面和附近的物体发生冲撞和摩擦而产生静电。因此:①应用空气过滤器将雾和粒子等滤除后再进行流动和喷出。②喷出流量应少,喷出压力应低,特别注意氢气类喷出引起爆炸。③管路和软管等在使用前应清扫,清除锈和灰尘。④凝缩二氧化碳喷出时,应避免开口部出现干冰,因为它与液相成分互相冲撞和摩擦,或与壁面冲撞、摩擦和飞溅而产生静电。⑤液化石油气瓶、管的开口部及法兰应清扫,并保持清洁。⑥氢、乙炔、丙烷、城市煤气和氮气的储气瓶、管路、软管等在使用前应进行清扫,清除锈和水分等。尽量不用胶皮管,而使用金属管,并将其接地。⑦水蒸气管道开口部易产生静电,应尽量使用干燥的水蒸气,喷出量应少,喷出压力应尽量限制在98牛/厘米2以下,且应使用静电少的喷嘴,喷嘴与物体间应有足够的距离。⑧烟雾剂和油漆喷雾时,不要对着近距离的物体进行大量和激烈的喷出。⑨ 飞机和航天器在飞行中与空气摩擦而产生静电,图2是火箭高度(公里)与电位(千伏)的关系。利用装于适当位置的防静电针,可将静电泄放到大气中,以防止电位的过度升高。中国发射同步卫星的捆绑式火箭即装有防静电针。

  静电防护

  防护措施

  除降低速度、压力、减少摩擦及接触频率,选用适当材料及形状,增大电导率等抑制措施外,还可采取下列措施:

  ①接地,即将金属导体与大地(接地装置)进行电气上的连接,以便将电荷泄漏到大地。此法适合于消除导体和电阻率在 108欧以下物体上的静电,而不宜用来消除绝缘体上的静电,因为绝缘体的接地容易发生火花放电,引起易燃易爆液体、气体的点燃或造成对电子设施的干扰。应使绝缘体与大地间保持106~109欧的电阻。仅供消除导体上静电用的接地,电阻值一般不宜超过 100~1000欧。非金属导体接地处应包上接触可靠的金属物或使用导电涂料,接触面积不小于 10厘米2。移动设备不能保持经常接地,接地操作应选在没有危险的场合和时间。

  ②搭接(或跨接)。将两个以上独立的金属导体进行电气上的连接,使其相互间大体上处于相同的电位(图3)。

  ③屏蔽。用接地的金属线或金属网等将带电的物体表面进行包覆,从而将静电危害限制到不致发生的程度。屏蔽措施还可防止电子设施受到静电的干扰。

  ④对几乎不能泄漏静电的绝缘体,采用抗静电剂以增大电导率,使静电易于泄漏。

  ⑤采用喷雾、洒水等方法,使环境相对湿度提高到60~70%,以抑制静电的产生,解决纺织厂等生产中静电的问题。

  静电保护(ESD)原理和设计

  一直想给大家讲讲ESD的理论,很经典。但是由于理论性太强,如果前面那些器件理论以及snap-back理论不懂的话,这个大家也不要浪费时间看了。任何理论都是一环套一环的,如果你不会画鸡蛋,注定了你就不会画大卫。

  静电放电(ESD: Electrostatic Discharge),应该是造成所有电子元器件或集成电路系统造成过度电应力(EOS: Electrical Over Stress)破坏的主要元凶。因为静电通常瞬间电压非常高(》几千伏),所以这种损伤是毁灭性和永久性的,会造成电路直接烧毁。所以预防静电损伤是所有IC设计和制造的头号难题。

  静电,通常都是人为产生的,如生产、组装、测试、存放、搬运等过程中都有可能使得静电累积在人体、仪器或设备中,甚至元器件本身也会累积静电,当人们在不知情的情况下使这些带电的物体接触就会形成放电路径,瞬间使得电子元件或系统遭到静电放电的损坏(这就是为什么以前修电脑都必须要配戴静电环托在工作桌上,防止人体的静电损伤芯片),如同云层中储存的电荷瞬间击穿云层产生剧烈的闪电,会把大地劈开一样,而且通常都是在雨天来临之际,因为空气湿度大易形成导电通到。

  

  那么,如何防止静电放电损伤呢?首先当然改变坏境从源头减少静电(比如减少摩擦、少穿羊毛类毛衣、控制空气温湿度等),当然这不是我们今天讨论的重点。我们今天要讨论的时候如何在电路里面涉及保护电路,当外界有静电的时候我们的电子元器件或系统能够自我保护避免被静电损坏(其实就是安装一个避雷针)。这也是很多IC设计和制造业者的头号难题,很多公司有专门设计ESD的团队,今天我就和大家从最基本的理论讲起逐步讲解ESD保护的原理及注意点,你会发现前面讲的PN结/二极管、三极管、MOS管、snap-back全都用上了。。。

  以前的专题讲解PN结二极管理论的时候,就讲过二极管有一个特性:正向导通反向截止(不记得就去翻前面的课程),而且反偏电压继续增加会发生雪崩击穿(Avalanche Breakdown)而导通,我们称之为钳位二极管(Clamp)。这正是我们设计静电保护所需要的理论基础,我们就是利用这个反向截止特性让这个旁路在正常工作时处于断开状态,而外界有静电的时候这个旁路二极管发生雪崩击穿而形成旁路通路保护了内部电路或者栅极(是不是类似家里水槽有个溢水口,防止水龙头忘关了导致整个卫生间水灾)。那么问题来了,这个击穿了这个保护电路是不是就彻底死了?难道是一次性的?答案当然不是。PN结的击穿分两种,分别是电击穿和热击穿,电击穿指的是雪崩击穿(低浓度)和齐纳击穿(高浓度),而这个电击穿主要是载流子碰撞电离产生新的电子-空穴对(electron-hole),所以它是可恢复的。但是热击穿是不可恢复的,因为热量聚集导致硅(Si)被熔融烧毁了。所以我们需要控制在导通的瞬间控制电流,一般会在保护二极管再串联一个高电阻,另外,大家是不是可以举一反三理解为什么ESD的区域是不能form Silicide的?还有给大家一个理论,ESD通常都是在芯片输入端的Pad旁边,不能在芯片里面,因为我们总是希望外界的静电需要第一时间泄放掉吧,放在里面会有延迟的(关注我前面解剖的那个芯片PAD旁边都有二极管http://ic-garden.cn/?p=482)。甚至有放两级ESD的,达到双重保护的目的。

  

  在讲ESD的原理和Process之前,我们先讲下ESD的标准以及测试方法,根据静电的产生方式以及对电路的损伤模式不同通常分为四种测试方式:人体放电模式(HBM: Human-Body Model)、机器放电模式(Machine Model)、元件充电模式(CDM: Charge-Device Model)、电场感应模式(FIM: Field-Induced Model),但是业界通常使用前两种模式来测试(HBM, MM)。

  1、人体放电模式(HBM):当然就是人体摩擦产生了电荷突然碰到芯片释放的电荷导致芯片烧毁击穿,秋天和别人触碰经常触电就是这个原因。业界对HBM的ESD标准也有迹可循(MIL-STD-883C method 3015.7,等效人体电容为100pF,等效人体电阻为1.5Kohm),或者国际电子工业标准(EIA/JESD22-A114-A)也有规定,看你要follow哪一份了。如果是MIL-STD-883C method 3015.7,它规定小于《2kV的则为Class-1,在2kV~4kV的为class-2,4kV~16kV的为class-3。

  

  2、机器放电模式(MM):当然就是机器(如robot)移动产生的静电触碰芯片时由pin脚释放,次标准为EIAJ-IC-121 method 20(或者标准EIA/JESD22-A115-A),等效机器电阻为0 (因为金属),电容依旧为100pF。由于机器是金属且电阻为0,所以放电时间很短,几乎是ms或者us之间。但是更重要的问题是,由于等效电阻为0,所以电流很大,所以即使是200V的MM放电也比2kV的HBM放电的危害大。而且机器本身由于有很多导线互相会产生耦合作用,所以电流会随时间变化而干扰变化。

  

  ESD的测试方法类似FAB里面的GOI测试,指定pin之后先给他一个ESD电压,持续一段时间后,然后再回来测试电性看看是否损坏,没问题再去加一个step的ESD电压再持续一段时间,再测电性,如此反复直至击穿,此时的击穿电压为ESD击穿的临界电压(ESD failure threshold Voltage)。通常我们都是给电路打三次电压(3 zaps),为了降低测试周期,通常起始电压用标准电压的70% ESD threshold,每个step可以根据需要自己调整50V或者100V。

  (1)。 Stress number = 3 Zaps. (5 Zaps, the worst case)

  (2)。 Stress stepΔVESD = 50V(100V) for VZAP 《=1000V

  ΔVESD = 100V(250V, 500V) for VZAP 》 1000V

  (3)。 Starting VZAP = 70% of averaged ESD failure threshold (VESD)

  另外,因为每个chip的pin脚很多,你是一个个pin测试还是组合pin测试,所以会分为几种组合:I/O-pin测试(Input and Output pins)、pin-to-pin测试、Vdd-Vss测试(输入端到输出端)、Analog-pin。

  1. I/O pins:就是分别对input-pin和output-pin做ESD测试,而且电荷有正负之分,所以有四种组合:input+正电荷、input+负电荷、output+正电荷、output+负电荷。测试input时候,则output和其他pin全部浮接(floating),反之亦然。

  

  2. pin-to-pin测试: 静电放电发生在pin-to-pin之间形成回路,但是如果要每每两个脚测试组合太多,因为任何的I/O给电压之后如果要对整个电路产生影响一定是先经过VDD/Vss才能对整个电路供电,所以改良版则用某一I/O-pin加正或负的ESD电压,其他所有I/O一起接地,但是输入和输出同时浮接(Floating)。

  

  3、Vdd-Vss之间静电放电:只需要把Vdd和Vss接起来,所有的I/O全部浮接(floating),这样给静电让他穿过Vdd与Vss之间。

  

  4、Analog-pin放电测试:因为模拟电路很多差分比对(Differential Pair)或者运算放大器(OP AMP)都是有两个输入端的,防止一个损坏导致差分比对或运算失效,所以需要单独做ESD测试,当然就是只针对这两个pin,其他pin全部浮接(floating)。

  

  好了,ESD的原理和测试部分就讲到这里了,下面接着讲Process和设计上的factor

  随着摩尔定律的进一步缩小,器件尺寸越来越小,结深越来越浅,GOX越来越薄,所以静电击穿越来越容易,而且在Advance制程里面,Silicide引入也会让静电击穿变得更加尖锐,所以几乎所有的芯片设计都要克服静电击穿问题。

  

  静电放电保护可以从FAB端的Process解决,也可以从IC设计端的Layout来设计,所以你会看到Prcess有一个ESD的option layer,或者Design rule里面有ESD的设计规则可供客户选择等等。当然有些客户也会自己根据SPICE model的电性通过layout来设计ESD。

  1、制程上的ESD:要么改变PN结,要么改变PN结的负载电阻,而改变PN结只能靠ESD_IMP了,而改变与PN结的负载电阻,就是用non-silicide或者串联电阻的方法了。

  1) Source/Drain的ESD implant:因为我们的LDD结构在gate poly两边很容易形成两个浅结,而这个浅结的尖角电场比较集中,而且因为是浅结,所以它与Gate比较近,所以受Gate的末端电场影响比较大,所以这样的LDD尖角在耐ESD放电的能力是比较差的(《1kV),所以如果这样的Device用在I/O端口,很容造成ESD损伤。所以根据这个理论,我们需要一个单独的器件没有LDD,但是需要另外一道ESD implant,打一个比较深的N+_S/D,这样就可以让那个尖角变圆而且离表面很远,所以可以明显提高ESD击穿能力(》4kV)。但是这样的话这个额外的MOS的Gate就必须很长防止穿通(punchthrough),而且因为器件不一样了,所以需要单独提取器件的SPICE Model。

  

  2) 接触孔(contact)的ESD implant:在LDD器件的N+漏极的孔下面打一个P+的硼,而且深度要超过N+漏极(drain)的深度,这样就可以让原来Drain的击穿电压降低(8V--》6V),所以可以在LDD尖角发生击穿之前先从Drain击穿导走从而保护Drain和Gate的击穿。所以这样的设计能够保持器件尺寸不变,且MOS结构没有改变,故不需要重新提取SPICE model。当然这种智能用于non-silicide制程,否则contact你也打不进去implant。

  

  3) SAB (SAlicide Block):一般我们为了降低MOS的互连电容,我们会使用silicide/SAlicide制程,但是这样器件如果工作在输出端,我们的器件负载电阻变低,外界ESD电压将会全部加载在LDD和Gate结构之间很容易击穿损伤,所以在输出级的MOS的Silicide/Salicide我们通常会用SAB(SAlicide Block)光罩挡住RPO,不要形成silicide,增加一个photo layer成本增加,但是ESD电压可以从1kV提高到4kV。

  

  4)串联电阻法:这种方法不用增加光罩,应该是最省钱的了,原理有点类似第三种(SAB)增加电阻法,我就故意给他串联一个电阻(比如Rs_NW,或者HiR,等),这样也达到了SAB的方法。

  

  2、设计上的ESD:这就完全靠设计者的功夫了,有些公司在设计规则就已经提供给客户solution了,客户只要照着画就行了,有些没有的则只能靠客户自己的designer了,很多设计规则都是写着这个只是guideline/reference,不是guarantee的。一般都是把Gate/Source/Bulk短接在一起,把Drain结在I/O端承受ESD的浪涌(surge)电压,NMOS称之为GGNMOS (Gate-Grounded NMOS),PMOS称之为GDPMOS (Gate-to-Drain PMOS)。

  以NMOS为例,原理都是Gate关闭状态,Source/Bulk的PN结本来是短接0偏的,当I/O端有大电压时,则Drain/Bulk PN结雪崩击穿,瞬间bulk有大电流与衬底电阻形成压差导致Bulk/Source的PN正偏,所以这个MOS的寄生横向NPN管进入放大区(发射结正偏,集电结反偏),所以呈现Snap-Back特性,起到保护作用。PMOS同理推导。

  

  这个原理看起来简单,但是设计的精髓(know-how)是什么?怎么触发BJT?怎么维持Snap-back?怎么撑到HBM》2KV or 4KV?

  如何触发?必须有足够大的衬底电流,所以后来发展到了现在普遍采用的多指交叉并联结构(multi-finger)。但是这种结构主要技术问题是基区宽度增加,放大系数减小,所以Snap-back不容易开启。而且随着finger数量增多,会导致每个finger之间的均匀开启变得很困难,这也是ESD设计的瓶颈所在。

  

  如果要改变这种问题,大概有两种做法(因为triger的是电压,改善电压要么是电阻要么是电流):1、利用SAB(SAlicide-Block)在I/O的Drain上形成一个高阻的non-Silicide区域,使得漏极方块电阻增大,而使得ESD电流分布更均匀,从而提高泄放能力;2、增加一道P-ESD (Inner-Pickup imp,类似上面的接触孔P+ ESD imp),在N+Drain下面打一个P+,降低Drain的雪崩击穿电压,更早有比较多的雪崩击穿电流(详见文献论文: Inner Pickup on ESD of multi-finger NMOS.pdf)。

  对于Snap-back的ESD有两个小小的常识要跟大家分享一下:

  1)NMOS我们通常都能看到比较好的Snap-back特性,但是实际上PMOS很难有snap-back特性,而且PMOS耐ESD的特性普遍比NMOS好,这个道理同HCI效应,主要是因为NMOS击穿时候产生的是电子,迁移率很大,所以Isub很大容易使得Bulk/Source正向导通,但是PMOS就难咯。

  2) Trigger电压/Hold电压: Trigger电压当然就是之前将的snap-back的第一个拐点(Knee-point),寄生BJT的击穿电压,而且要介于BVCEO与BVCBO之间。而Hold电压就是要维持Snap-back持续ON,但是又不能进入栅锁(Latch-up)状态,否则就进入二次击穿(热击穿)而损坏了。还有个概念就是二次击穿电流,就是进入Latch-up之后I^2*R热量骤增导致硅融化了,而这个就是要限流,可以通过控制W/L,或者增加一个限流高阻,最简单最常用的方法是拉大Drain的距离/拉大SAB的距离(ESD rule的普遍做法)。

  3、栅极耦合(Gate-Couple) ESD技术:我们刚刚讲过,Multi-finger的ESD设计的瓶颈是开启的均匀性,假设有10只finger,而在ESD 放电发生时,这10 支finger 并不一定会同时导通(一般是因Breakdown 而导通),常见到只有2-3 支finger会先导通,这是因布局上无法使每finger的相对位置及拉线方向完全相同所致,这2~3 支finger 一导通,ESD电流便集中流向这2~3支的finger,而其它的finger 仍是保持关闭的,所以其ESD 防护能力等效于只有2~3 支finger的防护能力,而非10 支finger 的防护能力。这也就是为何组件尺寸已经做得很大,但ESD 防护能力并未如预期般地上升的主要原因,增打面积未能预期带来ESD增强,怎么办?其实很简单,就是要降低Vt1(Trigger电压),我们通过栅极增加电压的方式,让衬底先开启代替击穿而提前导通产生衬底电流,这时候就能够让其他finger也一起开启进入导通状态,让每个finger都来承受ESD电流,真正发挥大面积的ESD作用。

  但是这种GCNMOS的ESD设计有个缺点是沟道开启了产生了电流容易造成栅氧击穿,所以他不见的是一种很好的ESD设计方案,而且有源区越小则栅压的影响越大,而有源区越大则snap-back越难开启,所以很难把握。

  4、还有一种复杂的ESD保护电路: 可控硅晶闸管(SCR: Silicon Controlled Rectifier),它就是我们之前讲过的CMOS寄生的PNPN结构触发产生Snap-Back并且Latch-up,通过ON/OFF实现对电路的保护,大家可以回顾一下,只要把上一篇里面那些抑制LATCH-up的factor想法让其发生就可以了,不过只能适用于Layout,不能适用于Process,否则Latch-up又要fail了。

  最后,ESD的设计学问太深了,我这里只是抛砖引玉给FAB的人科普一下了,基本上ESD的方案有如下几种:电阻分压、二极管、MOS、寄生BJT、SCR(PNPN structure)等几种方法。而且ESD不仅和Design相关,更和FAB的process相关,而且学问太深了,我也不是很懂。

  静电防护最基本的方法有哪些

  一、防静电的基本方法:

  1、接地把静电引导入大地按照材料的电阻率,材料可以分为静电导体、静电亚导体和绝缘材料三种。对于导体和静电亚导体,如果可以接地的话,只要用一根导线把它接地就能把它上面的电荷引导入大地,这是防静电措施中最直接最有效的。如工人带防静电手腕带及工作表面接地等。

  2、静电敏感元件在储存在或运输过程中会曝露于有静电的区域中,用静电屏蔽的方法可削弱外界静电对电子元件的影响。最通常的方法是用静电屏蔽袋作为保护。

  二、静电是一种处于静止状态的电荷。在干燥和多风的秋天,在日常生活中,人们常常会碰到这种现象:晚上脱衣服睡觉时,黑暗中常听到噼啪的声响,而且伴有蓝光,见面握手时,手指刚一接触到对方,会突然感到指尖针刺般刺痛,令人大惊失色;早上起来梳头时,头发会经常“飘”起来,越理越乱,拉门把手、开水龙头时都会“触电”,时常发出“啪、啪、啪”的声响,这就是发生在人体的静电。

查看详情

静电防护知识

展开查看更多

静电防护技术

静电释放_人体静电释放器安装规范

静电释放_人体静电释放器安装规范

静电火花可引爆加油站、造纸厂、粮食加工厂等而酿成火灾,也会引发瓦斯爆炸而导致严重人员伤亡;在天空,飞机与空气、水气、灰尘等摩擦起电,可严重干扰飞机的无线...

2018-01-18 标签:静电静电防护静电释放器 6.1万 1

工程师教您解决can总线通信干扰问题的方法

工程师教您解决can总线通信干扰问题的方法

各位工程师在工业通讯现场最担心遇到什么?通信干扰!CAN隔离模块能够有效解决CAN总线通信干扰问题,且较分立器件方案使用更简便。本文为大家总结CAN隔离...

2017-11-13 标签:can控制器静电防护隔离模块 4.0万 0

静电对人有危害吗_静电对人有什么影响

在秋冬季节,由于天气干燥,经常能感受到静电,这一小小的短暂刺激大部分人并不会放在心上,其实静电对人体的影响是不容小视的,本文详细介绍静电对人体的影响,并...

2018-01-18 标签:静电静电防护 3.0万 0

静电放电(ESD)理论研究及静电放电模型

静电放电(ESD)理论研究及静电放电模型

对于射频天线的微波信号,如果用TVS管,压敏等容性器件来做静电防护,射频信号会被衰减,因此要求TVS的电容很低,这样增加ESD措施的成本。对于微波信号可...

2018-05-10 标签:ESD静电防护 2.9万 0

静电对电子元器件和设备的损伤到底有多大

静电对电子元器件和设备的损伤到底有多大

Winter is coming!静电对电子元器件和设备的损伤在冬天更是不容忽视。生产线为什么会在防静电措施投入这么大呢?就是因为被静电打怕了!那么在实...

2017-12-13 标签:示波器静电防护 2.3万 0

浅析静电防护原理及方法

静电是一种电能,它存留于物体表面,是正负电荷在局部范围内失去平衡的结果,是通过电子或离子的转换而形成的。静电现象是电荷在产生和消失过程中产生的电现象的总称。

2019-01-10 标签:SMT静电防护 2.2万 0

电路级静电防护设计技巧与ESD防护方法

电路级静电防护设计技巧与ESD防护方法

静电放电(ESD)理论研究的已经相当成熟,为了模拟分析静电事件,前人设计了很多静电放电模型。

2019-05-05 标签:电路静电防护esd防护 1.4万 0

在工作中如何做好ESD防护 资深工程师经验分享

大家都知道ESD防护很重要,那么我们在工作中如何做好ESD防护?首先小编认为,制度和培训非常重要,对于设计人员要有一个制度让他们时刻保持警醒,在设计中保...

2020-08-17 标签:ESD静电静电放电 1.1万 0

如何设计静电防护电路?

对于大部分工程师来说,ESD是一种挑战,不仅要保护昂贵的电子元件不被ESD损毁,还要保证万一出现ESD事件后系统仍能继续运行。这就需要对ESD冲击时发生...

2015-09-18 标签:静电防护 7072 0

电气设备的静电防护及防腐蚀措施分享

随着科技的不断发展进步,人们的生活水平不断的提升,各种电气设备的应用越来越广泛,电气设备是保障社会经济运行和发展的关键。

2020-09-18 标签:电气设备静电防护 6558 0

查看更多>>

静电防护资讯

ESD静电二极管的原理是什么

静电防护用ESD二极管目前是大趋势,特别是在电源端口上的应用十分广泛,原因在于ESD静电二极管相比传统绝缘制备物品对电路的防护效果优势极为明显。

2022-06-01 标签:二极管ESD静电防护 8229 0

分析LED灯不亮故障原因

LED光源死灯的原因分析   LED光源的五大原物料(芯片、支架、荧光粉、固晶胶、封装胶和金线),都有可能导致其死灯的情况发生。

2020-01-16 标签:芯片LED光源镀层 7207 0

静电防护保护元器件,ESD二极管

ESD(Electrostatic Discharge Protection Devices),静电保护元器件,又称瞬态电压抑制二极管阵列(TVS Ar...

2020-03-25 标签:二极管静电防护 6500 0

可靠性设计的基本方法

系统在设计过程中将在满足性能指标的条件下,线路尽可能简单,系统设计充分借鉴2G直放站设计经验,采用可靠性高的、模块化的标准射频模块,提高系统的集成度,监...

2012-05-02 标签:可靠性设计静电防护降额设计 6431 0

从单板设计之初怎么解决EMC问题 板级EMC设计课来看看

1.如何从单板设计之初就避免辐射发射(RE)、传导发射(CE)等EMI问题;2.如何从单板设计之初就避免静电(ESD)、浪涌(SURGE)、脉冲群(EF...

2021-11-23 标签:ESD电磁辐射emc 5577 0

芯片级别静电防护设计的挑战及应对策略

近年,随着半导体工艺技术的持续发展,大量手机、物联网、人工智能、高性能计算等领域所应用的专业芯片陆续采用FinFET先进工艺来实现,以满足高性能设计需求...

2022-05-23 标签:芯片FinFET静电防护 4972 0

寒冷冬季该如何防静电?

静电可以说是冬天里,除了寒冷之外最让我们感到困扰的一种自然现象了。

2021-01-05 标签:静电静电防护 4058 0

汽车电子的静电浪涌设计及测试(图文)

汽车电子的静电浪涌设计及测试(图文)

我国对汽车EMC的要求越来越规范和严格,各大车厂和检测机构对汽车产品的EMC也理解越来越多,目前的汽车电子产品层出不穷,功能很容易实现,但是EMC问题经...

2020-03-14 标签:汽车电子静电防护浪涌电流 3551 0

如何进行静电防护

在实际电路设计中我们会采用一种或几种来进行静电保护:雪崩二极管来进行静电保护;使用高压电容进行电路保护;采用铁氧磁珠进行电路保护;火花间隙法;采用LC滤...

2022-02-21 标签:静电防护 3466 0

关于On-chip ESD 资源的介绍和分析

关于On-chip ESD 资源的介绍和分析

很多朋友会疑问,采用SOFICS的ESD解决方案有什么优点吗,总的来说,因为有很多项目经验,成熟的解决方案,可以直接用到客户的产品中,让客户减少产品设计...

2019-09-08 标签:芯片静电防护 3106 0

查看更多>>

静电防护数据手册

相关标签

相关话题

换一批
  • Protues
    Protues
    +关注
    Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。
  • Altium Designer
    Altium Designer
    +关注
  • ArduBlock
    ArduBlock
    +关注
    ArduBlock软件是Arduino官方编程环境的第三方软件,目前必须依附于Arduino软件下运行,区别于Arduino文本式编程环境,ArduBlock是以图形化积木搭建的方式编程的,这样的方式会使编程的可视化和交互性加强,编程门槛降低,即使没有编程经验的人也可以尝试给Arduino控制器编写程序。
  • AD10
    AD10
    +关注
  • 识别
    识别
    +关注
  • PCB封装
    PCB封装
    +关注
    pcb封装就是把 实际的电子元器件,芯片等的各种参数(比如元器件的大小,长宽,直插,贴片,焊盘的大小,管脚的长宽,管脚的间距等)用图形方式表现出来,以便可以在画pcb图时进行调用。
  • PCB封装库
    PCB封装库
    +关注
  • AD09
    AD09
    +关注
  • QuickPcb
    QuickPcb
    +关注
  • Protel 99 se
    Protel 99 se
    +关注
  • candence
    candence
    +关注
  • 面包板
    面包板
    +关注
    面包板是由于板子上有很多小插孔,专为电子电路的无焊接实验设计制造的。由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。
  • 特性阻抗
    特性阻抗
    +关注
    特性阻抗又称特征阻抗,它不是直流电阻,属于长线传输中的概念。特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用V/I表示。在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。
  • Protel DXP
    Protel DXP
    +关注
  • 布局布线
    布局布线
    +关注
  • 库文件
    库文件
    +关注
    库文件是计算机上的一类文件,提供给使用者一些开箱即用的变量、函数或类。库文件分为静态库和动态库,静态库和动态库的区别体现在程序的链接阶段:静态库在程序的链接阶段被复制到了程序中;动态库在链接阶段没有被复制到程序中,而是程序在运行时由系统动态加载到内存中供程序调用。使用动态库系统只需载入一次,不同的程序可以得到内存中相同的动态库的副本,因此节省了很多内存,而且使用动态库也便于模块化更新程序。
  • 清华紫光
    清华紫光
    +关注
  • PCB天线
    PCB天线
    +关注
  • AD软件
    AD软件
    +关注
  • Genesis2000
    Genesis2000
    +关注
  • 敷铜板
    敷铜板
    +关注
  • Altium_Designer
    Altium_Designer
    +关注
    Altium Designer 是原Protel软件开发商Altium公司推出的一体化的电子产品开发系统,主要运行在Windows操作系统。这套软件通过把原理图设计、电路仿真、PCB绘制编辑、拓扑逻辑自动布线、信号完整性分析和设计输出等技术的完美融合
  • 拼接
    拼接
    +关注
  • PCB制板
    PCB制板
    +关注
  • PADS9.5
    PADS9.5
    +关注
  • 封装设计
    封装设计
    +关注
  • 光绘文件
    光绘文件
    +关注
  • 感应式
    感应式
    +关注
  • 直角走线
    直角走线
    +关注
  • 贴片磁珠
    贴片磁珠
    +关注

关注此标签的用户(10人)

jf_59242921 efans_717013974 jf_92502247 efans_b4a4d8 YW198578YW shaodeli LEO.Fo(XQ) lisachu098855 stoplazy 佰洁检测 ben111

编辑推荐厂商产品技术软件/工具OS/语言教程专题