人工智能深度学习目标检测的详细资料免费下载

资料大小: 6.92 MB

所需积分: 0

下载次数:

用户评论: 0条评论,查看

上传日期: 2018-08-08

上 传 者: 易水寒他上传的所有资料

资料介绍

标签:深度学习(889)人工智能(7747)SSD(472)

  本文档的主要内容详细介绍的是人工智能深度学习目标检测的详细资料包括了:RCNN,Fast RCNN ,Faster RCNN ,YOLO,SSD

  数据预处理

  SSD模型训练

  什么是目标检测?目标检测主要是明确从图中看到了什么物体?他们在什么位置。传统的目标检测方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。

  1. 区域选择

  这一步是为了对目标进行定位。传统方法是采用穷举策略。由于目标可能在图片上的任意位置,而且大小不定,因此使用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的长宽。这种策略虽然可以检测到所有可能出现的位置,但是时间复杂度太高,产生的冗余窗口太多,严重影响后续特征的提取和分类速度的性能。

  2. 特征提取

  提取特征的好坏会直接影响到分类的准确性,但又由于目标的形态多样性,提取一个鲁棒的特征并不是一个简单的事。这个阶段常用的特征有SIFT(尺度不变特征变换,Scale-invariant feature transform)和HOG( 方向梯度直方图特征,Histogram ofOriented Gradient)等。

  3. 分类器

  主要有SVM,Adaboost等

  综上所述,传统目标检测存在两个主要问题:一个是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;而是手工设计的特征对于多样性没有很好的鲁棒性。

人工智能深度学习目标检测的详细资料免费下载

用户评论

查看全部 条评论

发表评论请先 , 还没有账号?免费注册

发表评论

用户评论
技术交流、我要发言! 发表评论可获取积分! 请遵守相关规定。
上传电子资料