基于近邻传输的粒度支持向量机学习算法

资料大小: 4.63 MB

所需积分: 0

下载次数:

用户评论: 0条评论,查看

上传日期: 2021-04-12

上 传 者: 他上传的所有资料

资料介绍

标签:支持向量机(42)算法(2498)

传统粒度支持向量机(GSVM模型可以有效提高攴持向量机(SⅥM的学习效率,但因其对初始粒划参数比较敏感,粒中心的选取比较粗糙,会损失一定的泛化能力。提出一种基于近邻传输的粒度支持向量机学习算法(APGSVM)。首先在训练数据上采用近邻传输思想选取一组高质量的更具有代表性的粒中心加入到训练集,再根据粒中样本的混合度及粒中心到超平面的距离对训练集进行优化,生成最终训练集,然后进行训练,这样可使GSⅥM具有更好的泛化能力。在UCⅠ标准数据集上的实验结果表明,与传统的粒度支持向量机相比,该算法分类效率有明显提高,在几个数据集上的正确率相对稳定,获得了较好的分类性能。

用户评论

查看全部 条评论

发表评论请先 , 还没有账号?免费注册

发表评论

用户评论
技术交流、我要发言! 发表评论可获取积分! 请遵守相关规定。
上传电子资料