基于双峰高斯分布的深度哈希检索算法

资料大小: 1.13 MB

所需积分: 0

下载次数:

用户评论: 0条评论,查看

上传日期: 2021-04-29

上 传 者: 他上传的所有资料

资料介绍

标签:深度学习(3460)图像(648)算法(2632)

  哈希检索因为具有存储空间小、检索速度快的特点而受到广泛关注。目前深度哈希算法存在2个主要问题深度哈希编码本质上是二值化特征,并且编码长度较短,存在特征表达能力有限的问题;已有的深度哈希算法无法直接通过反向传播学习离散哈希编码,通常将离散值松弛为连续值来优化学习,存在量化误差的问题。针对以上问题,提出一种结合注意力模型和双峰高斯分布的深度哈希检索算法。该算法设计嵌λ空间和通道注意力模型的网络结构,关注重要特征并抑制不必要特征,增强了哈希编码的特征表达能力;同时为了解决量化误差问题,将均值为的双峰高斯分布作为先验分布,并借鉴变分自编码机的思想,提出通过KL散度约束哈希编码分布服从先验分布,以减少量化误差。在3个基准数据集 CIFAR-10, Imagenet, NUS-WIDE上,在不同码位下计算MAP结果显示其MAP值优于对比的其他算法,取得了良好的检索效果,验证了文中算法的有效性。

用户评论

查看全部 条评论

发表评论请先 , 还没有账号?免费注册

发表评论

用户评论
技术交流、我要发言! 发表评论可获取积分! 请遵守相关规定。
上传电子资料