电子发烧友网 > 测量仪表 > 射频/微波/无线测试 > 正文

射频MOS功率放大电路模拟器的设计方案分析,射频功率放大器的特性与使用好坏分析

2017年06月18日 11:38 次阅读

  射频MOS功率放大电路模拟器的设计方案分析

  1. 引言

  本文设计的50MHz/250W 功率放大器采用美国APT公司生产的推挽式射频功率MOSFET管ARF448A/B进行设计。APT公司在其生产的射频功率MOSFET的内部结构和封装形式上都进行了优化设计,使之更适用于射频功率放大器。下面介绍该型号功率放大器的电路结构和设计步骤。

  2.50MHz/250W射频功率放大器的设计

  高压射频功率放大器的设计与传统低压固态射频功率放大器的设计过程有着显著的不同,以下50MHz/250W功率放大器的设计过程将有助于工程技术人员更好的掌握高压射频功率放大器的设计方法。

  2.1射频功率MOSFET管ARF448A/B的特点

  ARF448A和ARF448B是配对使用的射频功率MOSFET,反向耐压450V,采用TO-247封装,适用于输入电压范围为75V-150V的单频C类功率放大器,其工作频率可设置为13.56MHz、27.12MHz和40.68 MHz。ARF448A/B的高频增益特性如图1所示。从图中可以看出,当频率达到50MHz时,ARF448的增益约为17dB。

  2.2 设计指标

  50MHz/250W功率放大器的设计指标如下:

  (1)工作电压:》100V;(2)工作频率:50MHz;

  (3)增  益:》15dB;(4)输出功率:250W;

  (5)效  率:》70%;(6)驻波比:》20:1;

  2.3 设计过程

  功率放大器的输入阻抗可以用一个Q值很高的电容来表示。输入电容的取值可以参照相应的设计表格,从中可以查出对应不同漏极电压时的电容取值。当ARF448的漏极电压为125V时,对应的输入电容值为1400pF。输入阻抗取决于输入功率、漏极电压以及功率放大器的应用等级。单个功率放大器开关管负载阻抗的基本计算公式如式(1)所示。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  注意,利用公式(1)可以准确的计算出A类、AB类和B类射频功率放大器的并联负载阻抗,但并不完全适用于C类应用。对于C类射频功率放大器,应当采用式(2):

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  可以算出,当Vdd为150V时,Rp的取值相当于Vdd为50V时的9倍,这对输出负载匹配非常有利。但是,需要注意的是,此时功率 MOSFET输出电容的取值并没有发生明显的变化。由于高压状态下的并联输出阻抗显著增大,输出容抗也将显著增大。换句话说,此时输出容抗将起主要作用。因此,在设计过程中,应当采取相应的措施克服输出容抗的作用。

  推挽工作过程需要一个平衡电路,每个开关管的漏极均与一个双股扼流电感相连,采用这样的结构有利于磁通的平衡。

  综合考虑最大输出功率和最坏工作条件,Vdd应取为125V。这样,每个开关管将提供125W的输出功率,与1400pF的输出电容Cos并联的漏极阻抗为90欧姆。可以采用增加分流器或串联电感的方法对输出电容进行补偿。由于已经在开关管的漏极上采用了双股扼流电感,因此输出电容补偿措施可以考虑采用串联补偿电感。

  为了使漏极阻抗呈纯阻性,应当在开关管的漏极上串联电感。Rp可以通过公式(2)计算得到,而Cos是Vdd的反函数。计算出Rp和Xcos之后,选取适当地串联电感,可以实现共扼匹配,如图2所示。其中,Cop与并联输出阻抗Cos有关。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  通过公式(2)可以计算出Rp等于90欧姆,输出电容为125pF。在50MHz频率下,电抗Xcos为-j25.4欧姆。由此可以算出Rs为6.6欧姆,而所需的最优取值为6.25欧姆。这就需要将漏极电压稍稍调低或者将输出功率

  稍稍调高即可获得所需的最优取值。但是,在实际工作过程中,如果不能通过调整漏极电压或输出功率的方法获得所需的串联等效阻抗值,可以考虑在开关管上并联一个电容以增大Cos的取值,这样Ls的取值也将相应的变化。增大Ls使Xcos过补偿可以增大有效Rs值。如果在负载端增加一个分流电容,可以增大有效Rs值。图3中的电容C8就是这个分流电容。这样,电感、分流电容和输出电容就构成了一个π形网络。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  尽管功率放大器的DC非常高,但是由于工作频率高达50MHz,MOSFET的输入电容将使其输入阻抗呈现射频短路状态。虽然可以通过增加匹配网络来实现阻抗匹配,但是匹配网络的Q值将很高,其成本也将大大提高。最适宜的方法是采用一个简单的电感网络来控制变换过程。

  输入阻抗在功率放大器工作过程中并不是固定不变的,由于密勒电容效应的作用,输入阻抗的变化范围将相当大。

  图3是50MHz/250W功率放大器的电路原理图。门极匹配通过变压器和调谐网络实现。变压器可以提供推挽结构所需的平衡输入。推挽结构可以使单个MOSFET的有效输入阻抗增大约四分之一。注意,变压器次级不能悬空,应通过接地电阻接地。输出电路采用前面提到的串联补偿方法,大电感用于获得满意的输出电阻匹配效果,电容C8是输出电感网络的分流电容。T2是双股环形分流扼流电感,该电感位于L2/L3补偿扼流电感的低阻抗端,射频电压对它的影响很小,因此不会饱和。输出耦合电容需要承担射频电流,因此需要采用表面积较大的型号。

  图4为实际电路布局图,该电路采用双面覆铜板,直接固定在散热器上。线路板背面均为表面贴元件。而开关管则通过板上的矩形孔直接固定在散热器的底面。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  图5和图6所示分别为C类功率放大器在50MHz频率条件下,增益和效率与输出功率之间的关系图。从图中可知,输出功率为150W时的增益最大,高出设计值约4dB,这主要是因为C类功率放大器工作过程中需要进行压缩,因此实际工作时还是能够满足设计要求的。而最大效率则出现在输入和输出之间实现共扼匹配的时候。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  在对实际电路进行检验时,将Vdd以5V步长由110V增大到135V,实验结果清楚地显示增益和效率的最佳值出现在125V时。对电路重调后,将电压范围扩大到100V-150V,也能获得满意的效果,但是此时将可能出现峰值效率的情况。如果进一步扩大电压范围,L2和L3的值就需要作相应的改动。

  负载冗余测试是在25:1的驻波比条件下进行的。用一根同轴电缆作衰减器,通过调谐电路改变反射系数的相位,结果并未发生不稳定的现象。

  3. 结论

  前面介绍了50MHz/250W射频功率放大器的设计方法,该方法可以推广到其他高压射频功率放大器的设计过程中。利用APT公司的专用射频功率MOSFET将极大的简化射频功率放大器的设计过程。

  射频功率放大器的特性与使用好坏分析

  身为射频工程师,工作多多少少都会涉及到功率放大器。功率放大器可以说是很多射频工程师绕不过的坎。功能、分类、性能指标、电路组成、效率提升技术、发展趋势……关于射频功率放大器,该知道的你都知道么?快来补补课吧!

  射频功率放大器RFPA的功能

  射频功率放大器RFPA是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大 一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。功 率放大器往往是固定设备或终端的最昂贵、最耗电、效率最低的器件。

  在调制器产生射频信号后,射频已调信号就由RFPA将它放大到足够功率,经匹配网络,再由天线发射出去。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  图1 发射系统框图

  放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡 献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。这一“提升的贡献”,即为放大器存在的“意义”所在。如果放大器能够有好的性能,那么它 就可以贡献更多,这才体现出它自身的“价值”。如果放大器的初始“机制设计”存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任 何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”,对于外界还是放大器自身,都是灾难性的。

  射频功率放大器RFPA的分类

  根据工作状态的不同,功率放大器分类如下:

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  图2 功率放大器的分类

  射频功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲 (A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器 电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类, 但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。

  除了以上几种按照电流导通角分类的工作状态外,还有使电子器件工作于开关状态的丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。

  射频功率放大器RFPA的性能指标

  射频功率放大器RFPA的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。总体来说,放大器的评判大概存在着如下指标:

  增益。这是输入和输出之间比值,代表着放大器的贡献。好的放大器,都是在其“自身能力的范围内”,尽可能多的贡献出“产出”。 工作频率。这代表着放大器对不同频率信号的承载能力。 工作带宽。这决定着放大器能够在多大范围内产生“贡献”。对于一个窄带放大器来说,其自身设计即便没有问题,但是其贡献可能是有限的。 稳定性。每一个晶体管都存在着潜在的“不稳定区域”。放大器的“设计”需要消除这些潜在的不稳定。放大器的稳定性包括两种,潜在不稳定和绝对稳定。前者可 能在特定条件和环境下出现不稳定现象,后者则能够保证在任何情况下保持稳定。稳定性问题之所以重要,是因为不稳定意味着“震荡”,这时放大器不但影响自 身,还会将不稳定因素输出。 最大输出功率。这个指标决定着放大器的“容量”。对于“大的系统”来说,希望他们在牺牲一定的增益的情况下能够输出更大的功率。 效率。放大器都要消耗一定“能量”,还实现一定的“贡献”。其贡献与消耗之比,即为放大器的效率。能够贡献更多消耗更少,就是好的放大器。 线性。线性所表征的是放大器对于大量输入进行正确的反应。线性的恶化表示放大器在过量的输入的状态下将输入“畸变”或“扭曲”。好的放大器不应该表现出这 种“畸形”的性质。

  下面内容:射频功放的电路组成、稳定和效率提升方式

  射频功率放大器RFPA的电路组成

  放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路

  1、晶体管

  晶体管有很多种,包括当前还有多种结构的晶体管被发明出来。本质上,晶体管的工作都是表现为一个受控的电流源或电压源,其工作机制是将不含内容的直流的能 量转化为“有用的”输出。直流能量乃是从外界获得,晶体管加以消耗,并转化成有用的成分。一个晶体管,我们可以视之为“一个单位”。不同的晶体管不同的 “能力”,例如其承受功率的能力有区别,这也是因为其能获取的直流能量的能力不同所致;例如其反应速度不同,这决定它能工作在多宽多高的频带上;例如其面 向输入、输出端的阻抗不同,及对外的反应能力不同,这决定了给它匹配的难易程度。

  2、偏置及稳定电路

  偏置和稳定电路是两种不同的电路,但因为他们往往很难区分,且设计目标趋同,所以可以放在一起讨论。

  晶体管的工作需要在一定的偏置条件下,我们称之为静态工作点。这是晶体管立足的根本,是它自身的“定位”。每个晶体管都给自己进行了一定的定位,其定位不 同将决定了它自身的工作模式,在不同的定位上也存在着不同的性能表现。有写定位点上起伏较小,适合于小信号工作;有些定位点上起伏较大,适合于大功率输 出;有些定位点上索取较少,释放纯粹,适合于低噪声工作;有些定位点,晶体管总是在饱和和截至之间徘徊,处于开关状态。一个恰当的偏置点,是正常工作的 础。

  稳定电路一定要在匹配电路之前,因为晶体管需要将稳定电路作为自身的一部分存在,再与外界接触。在外界看来,加上稳定电路的晶体管,是一个“全新的”晶体管。它做出一定的“牺牲”,获得了稳定性。稳定电路的机制能够保证晶体管顺利而稳定的运转。

  3、输入输出匹配电路

  匹配电路的目的是在选择一种接受的方式。对于那些想提供更大增益的晶体管来说,其途径是全盘的接受和输出。这意味着通过匹配电路这一个接口,不同的晶体管 之间沟通更加顺畅,对于不同种的放大器类型来说,匹配电路并不是只有“全盘接受”一种设计方法。一些直流小、根基浅的小型管,更愿意在接受的时候做一定的 阻挡,来获取更好的噪声性能,然而不能阻挡过了头,否则会影响其贡献。而对于一些巨型功率管,则需要在输出时谨小慎微,因为他们更不稳定,同时,一定的保 留有助于他们发挥出更多的“不扭曲的”能量。

  射频功率放大器RFPA稳定的实现方式

  每一个晶体管都是潜在不稳定的。好的稳定电路能够和晶体管融合在一起,形成一种“可持续工作”的模式。稳定电路的实现方式可划分为两种:窄带的和宽带的。

  窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

  不稳定的根源是正反馈,窄带稳定思路是遏制一部分正反馈,当然,这也同时抑制了贡献。而负反馈做得好,还有产生很多额外的令人欣喜的优点。比如,负反馈可能会使晶体管免于匹配,既不需要匹配就可以与外界很好的接洽了。另外,负反馈的引入会提升晶体管的线性性能。

  射频功率放大器RFPA的效率提升技术

  晶体管的效率都有一个理论上的极限。这个极限随偏置点(静态工作点)的选择不同而不同。另外,外围电路设计得不好,也会大大降低其效率。目前工程师们对于效率提升的办法不多。这里仅讲两种:包络跟踪技术与Doherty技术。

  包络跟踪技术的实质是:将输入分离为两种:相位和包络,再由不同的放大电路来分别放大。这样,两个放大器之间可以专注的负责其各自的部分,二者配合可以达到更高的效率利用的目标。

  Doherty技术的实质是:采用两只同类的晶体管,在小输入时仅一个工作,且工作在高效状态。如果输入增大,则两个晶体管同时工作。这种方法实现的基础是二只晶体管要配合默契。一种晶体管的工作状态会直接的决定了另一支的工作效率。

  手机射频模块功率放大器(PA)市场情况

  手机功率放大器领域是目前手机里无法集成化的元件,手机性能、占位面积、通话质量、手机强度、电池续航能力都由功率放大器决定。

  如何集成这些不同频段和制式的功率放大器是业界一直在研究的重要课题。目前有两种方案:一种是融合架构,将不同频率的射频功率放大器PA集成;另一种架构 则是沿信号链路的集成,即将PA与双工器集成。两种方案各有优缺点,适用于不同的手机。融合架构,PA的集成度高,对于3个以上频带巨有明显的尺寸优 势,5-7个频带时还巨有明显的成本优势。缺点是虽然PA集成了,但是双工器仍是相当复杂,并且PA集成时有开关损耗,性能会受影响。而对于后一种架构, 性能更好,功放与双功器集成可以提升电流特性,大约可以节省几十毫安电流,相当于延长15%的通话时间。所以,业内人士的建议是,大于6个频段时(不算 2G,指3G和4G)采用融合架构,而小于四个频段时采用PA与双工器集成的方案PAD。

技术专区

关注电子发烧友微信

有趣有料的资讯及技术干货

下载发烧友APP

打造属于您的人脉电子圈

关注发烧友课堂

锁定最新课程活动及技术直播
收藏 人收藏
分享:

评论

相关推荐

场效应管在电路中如何控制电流大小_场效应管测量方...

本文开始介绍了场效应管的概念和场效应管特点,其次介绍了场效应管的参数与场效应管的作用,最后分析了场效...

发表于 2018-04-03 11:37 55次阅读
场效应管在电路中如何控制电流大小_场效应管测量方...

贴片电容哪个品牌比较好_贴片电容品牌大全

贴片电容是一种电容材质。贴片电容全称为:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。贴片...

发表于 2018-04-02 14:01 47次阅读
贴片电容哪个品牌比较好_贴片电容品牌大全

哪种板材最适合于微波频段或毫米波频段功率放大器的...

设计射频微波功放时还需要考虑的问题是热管理。材料导热系数(或称热导率)就是一个可以帮助减少这个问题的...

发表于 2018-04-02 11:39 156次阅读
哪种板材最适合于微波频段或毫米波频段功率放大器的...

糖葫芦低通滤波器的结构及原理方案设计

糖葫芦低通滤波器结构简单,插损小,功率容量较高,是同轴线低通的最常见形式。但由于其属于三维结构,糖葫...

发表于 2018-04-02 11:15 104次阅读
糖葫芦低通滤波器的结构及原理方案设计

电容为什么叫法拉?电容器是如何装电又如何放电?

关于电容器装电的本领——静电容量的大小可以通过公式C=Q/U进行测算,当然现在有很多专用的仪器可以直...

发表于 2018-04-02 09:04 117次阅读
电容为什么叫法拉?电容器是如何装电又如何放电?

最全面陶瓷贴片电容终极学习篇(干货值得收藏)

最全面陶瓷贴片电容(MLCC)知识篇章,值得电子工程师们珍藏。陶瓷贴片电容器(MLCC)使用的陶瓷介...

发表于 2018-04-01 11:03 485次阅读
最全面陶瓷贴片电容终极学习篇(干货值得收藏)

全球射频前端市场规模:以射频开关和LNA为例说明

集成电路设计属于技术密集型行业,尤其对于射频前端设计,由于需要适配多通信制式、多频段,未来还需要满足...

发表于 2018-03-31 09:34 444次阅读
全球射频前端市场规模:以射频开关和LNA为例说明

择善而从:理性面对电子元器件涨价潮

目前,就存储器、MLCC等半导体元器件来说,依旧处于涨价势态。

发表于 2018-03-31 09:16 705次阅读
择善而从:理性面对电子元器件涨价潮

5G手机的射频前端模块市场_5G专利握于哪些公司...

伴随着5G手机2025年出货量将达约15亿支的预测,属于5G应用的射频组件市场在战略上已具有重要意义...

发表于 2018-03-31 07:44 277次阅读
5G手机的射频前端模块市场_5G专利握于哪些公司...

相位补偿是个什么鬼?

2004年,帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满。

发表于 2018-03-30 10:41 175次阅读
相位补偿是个什么鬼?

硅基GaN为固态射频能量应用带来更多可能

 等离子灯自发明以来便由磁控管供电,磁控管的平均寿命预计在500至1000小时。在评估等离子灯的价值...

发表于 2018-03-30 09:08 171次阅读
硅基GaN为固态射频能量应用带来更多可能

日本控制电容价格遭受20亿的罚款

据外媒报导,欧盟(EU)欧洲委员会21日认定佳美工(Nippon Chemi-con)等9家企业违反...

发表于 2018-03-29 15:55 338次阅读
日本控制电容价格遭受20亿的罚款

想学会如何测试射频微波元器件吗?本文教你快速学会

学会了,就有可能为自己赢得一台示波器

发表于 2018-03-29 14:01 216次阅读
想学会如何测试射频微波元器件吗?本文教你快速学会

ADI对5G技术现状与趋势的解读

从全球各国5G的部署情况来看,美国倾向于使用微波频段,中日韩等亚太国家则主打sub-6GHz频段,欧...

发表于 2018-03-29 11:39 437次阅读
ADI对5G技术现状与趋势的解读

典型继电器电路图大全(稳压电源/无电感式模拟继电...

本文主要介绍了典型继电器电路图大全(稳压电源/无电感式模拟继电器/晶体管)。电磁式继电器一般由铁芯、...

发表于 2018-03-29 10:55 144次阅读
典型继电器电路图大全(稳压电源/无电感式模拟继电...

2n3055简易功放电路图大全(音频功率放大器/...

本文主要介绍了2n3055简易功放电路图大全(音频功率放大器/扬声器/晶体管)。2n3055音频功率...

发表于 2018-03-29 08:53 148次阅读
2n3055简易功放电路图大全(音频功率放大器/...

关于51单片机的电容、电感、频率测量仪(LCF表...

大体测量范围电感测量范围: 0.1μH-----1H小电容测量范围: 1pF----2....

发表于 2018-03-28 17:00 481次阅读
关于51单片机的电容、电感、频率测量仪(LCF表...

整流电路中电容的作用是什么

本文主要介绍了整流电路中电容的作用是什么?在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放...

发表于 2018-03-28 13:46 270次阅读
整流电路中电容的作用是什么

电容击穿是开路还是短路_电容击穿原因是什么

本文开始阐述了电容击穿的概念和电容器被击穿的条件,其次分析了电容击穿后是开路还是短路,最后介绍了电容...

发表于 2018-03-27 18:21 163次阅读
电容击穿是开路还是短路_电容击穿原因是什么

什么叫双极性晶体管_双极性与单极性晶体管有什么区...

晶体管(transistor)是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制等多种...

发表于 2018-03-27 13:48 89次阅读
什么叫双极性晶体管_双极性与单极性晶体管有什么区...

500亿晶体管!ACAP技术细节

ACAP 的核心是新一代的 FPGA 架构,结合了分布式存储器与硬件可编程的 DSP 模块、一个多核...

发表于 2018-03-27 11:04 280次阅读
500亿晶体管!ACAP技术细节

最简单闪光灯电路图大全(晶体管/电容器/照相机闪...

本文主要介绍了最简单闪光灯电路图大全(晶体管/电容器/照相机闪光灯)。电子频闪灯是由晶体管组成的互补...

发表于 2018-03-27 10:23 236次阅读
最简单闪光灯电路图大全(晶体管/电容器/照相机闪...

做阻抗匹配,电路已经基本确定,确发现,电容电感的值市面上很多没有,请问各位有遇见过类似的问题吗?

发表于 2018-03-27 10:01 301次阅读
做阻抗匹配,电路已经基本确定,确发现,电容电感的值市面上很多没有,请问各位有遇见过类似的问题吗?

光电耦合器测试电路图大全(光敏晶体管/驱动管/发...

本文主要介绍了光电耦合器测试电路图大全(光敏晶体管/驱动管/发光二极管)。光电耦合器运用广泛,依据光...

发表于 2018-03-27 09:13 252次阅读
光电耦合器测试电路图大全(光敏晶体管/驱动管/发...

【下载】《射频板PCB工艺设计规范》

发表于 2018-03-26 17:24 1377次阅读
【下载】《射频板PCB工艺设计规范》

加速电容作用?电路工作原理分析

)加速截止过程;当输入信号电压U从高电平突然跳变到OV时,如图3(b)所示的tl时刻,由于Cl上原先...

发表于 2018-03-26 09:52 223次阅读
加速电容作用?电路工作原理分析

最简单的电容振荡电路图大全(四款最简单的电容振荡...

本文主要介绍了最简单的电容振荡电路图大全(四款最简单的电容振荡电路设计原理图详解)。电容三点式振荡电...

发表于 2018-03-26 06:09 149次阅读
最简单的电容振荡电路图大全(四款最简单的电容振荡...

[射频芯片] 求推荐性价比高的超低功耗无线射频模块

发表于 2018-03-25 19:57 125次阅读
[射频芯片] 求推荐性价比高的超低功耗无线射频模块

晶体管:半导体硅产业70周年

晶体管是互联网时代的无名英雄,但是半导体行业之外的人却很少注意到它们的存在。1947年12月16日,...

发表于 2018-03-25 08:05 363次阅读
晶体管:半导体硅产业70周年

双极晶体管的工作原理

从PN结分析知道,基射极电压UBE决定了发射结的注入水平,即调节了集电区的电流。当撤掉基极驱动,即撤...

发表于 2018-03-24 11:46 644次阅读
双极晶体管的工作原理

Boost电路中电感和电容的值怎么确定

发表于 2018-03-23 23:20 149次阅读
Boost电路中电感和电容的值怎么确定

回收SMB100A模拟射频信号源

发表于 2018-03-23 18:11 67次阅读
回收SMB100A模拟射频信号源

回收SMC100A经济型模拟射频信号源

发表于 2018-03-23 18:10 81次阅读
回收SMC100A经济型模拟射频信号源

回收安捷伦53210A射频频率计数器

发表于 2018-03-22 19:43 54次阅读
回收安捷伦53210A射频频率计数器

回收N9310A射频信号发生器

发表于 2018-03-22 15:22 49次阅读
回收N9310A射频信号发生器

电容传感器 温度传感器

发表于 2018-03-22 12:52 238次阅读
电容传感器   温度传感器

使用晶体管和电流表来测量电感

双极结晶体管将电流从较低电阻的发射极转移到较高电阻的集电极。您可以使用此属性来测量电感,方法是在发射...

发表于 2018-03-22 11:08 608次阅读
使用晶体管和电流表来测量电感

基于UVM的基带射频接口电路的验证

基带射频接口模块包含射频接口的接收通路模块和发送通路模块。基带射频接口模块架构图如图2所示。此射频接...

发表于 2018-03-22 09:06 360次阅读
基于UVM的基带射频接口电路的验证

回收Agilent4288A电容计

发表于 2018-03-21 21:11 55次阅读
回收Agilent4288A电容计

Qorvo® 推出业内最强大的GaN-on-Si...

移动应用、基础设施与航空航天、国防应用中 RF 解决方案的领先供应商 Qorvo®, Inc.(纳斯...

发表于 2018-03-21 16:37 3577次阅读
Qorvo® 推出业内最强大的GaN-on-Si...

电解电容纹波电流及频率测试方法

在设计开关电源时,选型电解电容时其中纹波电流是一个很重要的指标,既要经过理论计算也要经过实际测量来保...

发表于 2018-03-20 15:22 425次阅读
电解电容纹波电流及频率测试方法

PLC通讯端口损坏,PLC输入线间电容引起误动作

如下图1所示,网络13和14都调用protection子程序,这时,网络14调用时protectio...

发表于 2018-03-20 11:03 315次阅读
PLC通讯端口损坏,PLC输入线间电容引起误动作

plc晶体管输出电路图_PLC晶体管输出接线图

本文主要介绍了plc晶体管输出电路图_PLC晶体管输出接线图。基本单元的晶体管输出中,包括漏型输出和...

发表于 2018-03-20 09:44 392次阅读
plc晶体管输出电路图_PLC晶体管输出接线图

射频测量技术在现代雷达和电子战信号中的重要性

现代雷达 和电子战系统依靠复杂的信号处理和复杂的射频调制脉冲。若没有合适的信号设计验证,这些技术可能...

发表于 2018-03-20 09:30 136次阅读
射频测量技术在现代雷达和电子战信号中的重要性

晶体管测试仪电路图大全(CD4022/双极晶体管...

本文主要介绍了晶体管测试仪电路图大全(CD4022/双极晶体管/NE555时基电路图详解)。通过简单...

发表于 2018-03-20 09:06 160次阅读
晶体管测试仪电路图大全(CD4022/双极晶体管...

自制晶体管配对仪电路

本文开始介绍了两款晶体管配对电路,其次介绍了结型场效应晶体管配对测试电路,最后阐述了自制晶体管配对仪...

发表于 2018-03-19 15:24 219次阅读
自制晶体管配对仪电路

RF产业中的公司名人堂以及他们将如何受到5G发展...

随着技术供应商与能够处理越来越多数量的频段的复杂RF前端(RFFE,RF front ends)模块...

发表于 2018-03-19 15:17 378次阅读
RF产业中的公司名人堂以及他们将如何受到5G发展...

矢量网络分析仪E5063A是如何测试一个射频微波...

在校准前请观察E-Cal的LED指示灯是否已经变为绿色,绿色代表ECal已经准备完毕可以开始校准(如...

发表于 2018-03-19 15:13 412次阅读
矢量网络分析仪E5063A是如何测试一个射频微波...

RFID射频识别技术详解之RFID系统构架与基本...

RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。短距离射频产品不怕油渍、灰尘污染等...

发表于 2018-03-18 11:49 1592次阅读
RFID射频识别技术详解之RFID系统构架与基本...

射频/微波PCB设计详情

如今的电子产品已经不再像上世纪 70 年代的电视和电冰箱一样,消费者每隔十年才更新换代一次。现在几乎...

发表于 2018-03-17 11:47 557次阅读
射频/微波PCB设计详情

摩尔定律的经济效益显然已达到终点,产业发展将会受...

从时间层面来看,摩尔定律已然失效,然而设计方面仍可透过一些技术可将晶体管尺寸继续缩小、加快处理速度并...

发表于 2018-03-17 09:28 558次阅读
摩尔定律的经济效益显然已达到终点,产业发展将会受...

汉天下发布维权公告:市场上的5124射频功放芯片...

近日北京中科汉天下电子技术有限公司(以下简称汉天下)发布公告称,公司发现市场上出现并销售一款型号为5...

发表于 2018-03-16 11:57 475次阅读
汉天下发布维权公告:市场上的5124射频功放芯片...

最全射频高速器件测试详细解读(图文)

在通信及电子技术日益发展的今天, 所有的系统依旧由各种元器件组成。多种多样的元器件仍然在各个行业扮演...

发表于 2018-03-16 09:56 1702次阅读
最全射频高速器件测试详细解读(图文)

开关三极管的基本电路,常用到的电容作用

每个集成运放的电源引线,一般都应采用去偶旁路措施,如图所示图中的高频旁路电容,通常可选用高频性能优良...

发表于 2018-03-16 08:58 578次阅读
开关三极管的基本电路,常用到的电容作用

RF和混合信号PCB布局最佳指南(专家应用笔记)

摘要: 摘要:本应用笔记提供关于射频(RF)印刷电路板(PCB)设计和布局的指导及建议,包括关于混合...

发表于 2018-03-15 18:15 1889次阅读
RF和混合信号PCB布局最佳指南(专家应用笔记)

电容失效模式和失效机理

电容器的常见失效模式有:――击穿短路;致命失效――开路;致命失效――电参数变化(包括电容量超差、损耗...

发表于 2018-03-15 11:00 497次阅读
电容失效模式和失效机理

松下研发出新型MIS结构的Si基GaN功率晶体管

松下宣布研发出新型MIS结构的Si基GaN功率晶体管,可以连续稳定的工作,栅极电压高达10V,工作电...

发表于 2018-03-15 09:56 520次阅读
松下研发出新型MIS结构的Si基GaN功率晶体管

摩尔定律的指标性人物预言半导体晶体管将会持续微缩

作为摩尔定律的指标性人物,胡正明不仅是延续定律的“推手”、发明FinFET与FDSOI的科学家,同时...

发表于 2018-03-15 09:31 491次阅读
摩尔定律的指标性人物预言半导体晶体管将会持续微缩

2018慕尼黑上海电子展展品精选

ARISO LP采用磁感应近场耦合技术,可以不通过任何物理直接连接ARISO LP还内置了2.4G...

发表于 2018-03-15 09:21 787次阅读
2018慕尼黑上海电子展展品精选

mlcc电容温度最高能达到多少_MLCC电容特性...

本文主要介绍了mlcc电容温度最高能达到多少_MLCC电容特性及注意事项。汽车级径向引线的多层陶瓷片...

发表于 2018-03-14 17:16 209次阅读
mlcc电容温度最高能达到多少_MLCC电容特性...

开关三极管,加速电容的分析!

由于电荷存储效应,晶体管BE之间有一接电容,与Rb构成RC电路,时间常数较大影响了晶体管的导通和截至...

发表于 2018-03-14 17:06 368次阅读
开关三极管,加速电容的分析!

贴片电容100是多少_贴片电容读数方法

本文主要介绍了贴片电容100是多少_贴片电容读数方法。电容标100的话是指10PF,即10纳法。比如...

发表于 2018-03-14 15:16 214次阅读
贴片电容100是多少_贴片电容读数方法

电容的保质期是多久_高压陶瓷电容器最佳效果期

本文主要介绍了电容的保质期是多久_高压陶瓷电容器最佳效果期。电容是由两块金属电极之间夹一层绝缘电介质...

发表于 2018-03-14 14:36 166次阅读
电容的保质期是多久_高压陶瓷电容器最佳效果期

关于有极性电容和无极性电容问题

注意两个电解电容负极对负极联接,现在有四个电极(二正极在外二负极在内),两层介质,一条导线。把两负极...

发表于 2018-03-14 09:03 485次阅读
关于有极性电容和无极性电容问题

晶体管微缩会终结吗?集成电路制造工艺升级

在集成电路制造工艺升级的过程中,High-K和FinFET的出现对摩尔定律的延续发生了重要的作用,并...

发表于 2018-03-13 16:01 496次阅读
晶体管微缩会终结吗?集成电路制造工艺升级

非线性电路的分析方法_非线性电路分析举例

本文主要介绍了非线性电路的分析方法_非线性电路分析举例。在模拟电子电路中,用图解的方法,说明非线性元...

发表于 2018-03-13 15:30 113次阅读
非线性电路的分析方法_非线性电路分析举例

国巨不惧大陆厂商的底气还来自于提早布局

面对被动元件的缺货涨价的行情,虽然日、韩、台、中等被动元件厂陆续释出扩产计划,但日厂主攻高单价、高毛...

发表于 2018-03-13 11:40 572次阅读
国巨不惧大陆厂商的底气还来自于提早布局

如何应对运算放大器电容负载

适合这一概念的应用是将输入驱动至 SAR-ADC。在这种情况下,需要该信号在转换器的采集时间内 (t...

发表于 2018-03-12 11:03 680次阅读
如何应对运算放大器电容负载

集成电路制造工艺升级的过程中,晶体管微缩会终结吗...

在集成电路制造工艺升级的过程中,High-K和FinFET的出现对摩尔定律的延续发生了重要的作用,并...

发表于 2018-03-12 11:00 573次阅读
集成电路制造工艺升级的过程中,晶体管微缩会终结吗...

Cree 动出击收购英飞凌射频功率业务

Cree与英飞凌都是行业内领先的科技公司,各有所长。此次通过收购吸收英飞凌射频功率的团队和技术将扩充...

发表于 2018-03-11 11:44 111次阅读
Cree 动出击收购英飞凌射频功率业务

u-blox F9平台研发的基带和射频一体化芯片...

全球无线及定位模块和芯片的领先供应商u-blox公司近日宣布推出F9技术平台,为面向大众市场的工业和...

发表于 2018-03-11 01:29 257次阅读
u-blox F9平台研发的基带和射频一体化芯片...

如何通过技巧快速进行选型?电源设计浅谈

电容是开关电源中的再普通不过的器件,它可以用来降低纹波噪声,可以用来提高电源的稳定性以及瞬态响应性,...

发表于 2018-03-10 09:34 2905次阅读
如何通过技巧快速进行选型?电源设计浅谈

射频前端的一体化设计决定下一代移动设备发展

随着移动行业向下一代网络迈进,整个行业将面临射频组件匹配,模块架构和电路设计上的挑战。 直到早期的L...

发表于 2018-03-09 18:28 95次阅读
射频前端的一体化设计决定下一代移动设备发展

射频从业者必看,全球最大的砷化镓晶圆代工龙头解读

2010 年起因为从2G 进入3G 时代(2010~2013) ,带动智慧行动装置高速起飞,带动了射...

发表于 2018-03-09 18:08 90次阅读
射频从业者必看,全球最大的砷化镓晶圆代工龙头解读

电容滤波电路,全波或桥式整流电容滤波的原理

最基本的滤波元件是电感、电容。其滤波原理是:利用这些电抗元件在整流二极管导通期间储存能量、在截止期间...

发表于 2018-03-09 15:58 715次阅读
电容滤波电路,全波或桥式整流电容滤波的原理

晶振为什么要加电容_需要配多大电容

晶振一般叫做晶体谐振器,是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成...

发表于 2018-03-09 15:55 384次阅读
晶振为什么要加电容_需要配多大电容

三大基本变换器公式应该这样推导,通俗易懂!

对于这三个变换器的占空比与输入输出电压关系的推导是不是很简单啊,其实对于各种硬开关拓扑结构的变压器或...

发表于 2018-03-09 11:52 558次阅读
三大基本变换器公式应该这样推导,通俗易懂!

16M晶振要配多大电容_晶振为什么要配电容

晶振的标称值在测试时有一个“负载电容”的条件,在工作时满足这个条件,振荡频率才与标称值一致,也就是说...

发表于 2018-03-09 11:22 153次阅读
16M晶振要配多大电容_晶振为什么要配电容

科锐与英飞凌越加紧密 27亿收购英飞凌射频功率事...

发光二极体(LED)上游晶粒制造大厂科锐(Cree Inc.)3月6日宣布以3.45亿欧元(约27....

发表于 2018-03-08 18:45 1458次阅读
科锐与英飞凌越加紧密 27亿收购英飞凌射频功率事...

英飞凌射频(RF)功率业务,以约3亿4500万欧...

英飞凌首席执行官Reinhard Ploss说:“Cree是我们射频业务的新东家,在业内有良好的声誉...

发表于 2018-03-07 13:46 1636次阅读
英飞凌射频(RF)功率业务,以约3亿4500万欧...

e络盟与 Amphenol SV Microwa...

全球电子元器件与开发服务分销商e 络盟宣布与 Amphenol SV Microwave 签署新的全...

发表于 2018-03-06 16:19 3249次阅读
e络盟与 Amphenol SV Microwa...

看看5G射频连接器有哪些上市公司

10大5G射频连接器上市公司排名

发表于 2018-03-06 09:50 1541次阅读
看看5G射频连接器有哪些上市公司

钽电容的优点和最新发展

钽电容向设计工程师提供紧致、高性能的电子电路,以及具有稳定性能的可靠高容值解决方案。钽电容过去一直受...

发表于 2018-03-04 15:50 613次阅读
钽电容的优点和最新发展

双极结型晶体管差分放大器的温度补偿

双极结型晶体管(BJT)对发射极耦合差分放大器电路是模拟设计人员熟悉的放大器级,但其复杂性也颇有意思...

发表于 2018-03-04 15:45 389次阅读
双极结型晶体管差分放大器的温度补偿

电力晶体管GTR的开关特性详解

电力晶体管是一种双极型大功率高反压晶体管,由于其功率非常大,所以,它又被称作为巨型晶体管,简称GTR...

发表于 2018-03-01 16:06 256次阅读
电力晶体管GTR的开关特性详解

cpu晶体管为什么会计算

中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台...

发表于 2018-03-01 15:53 162次阅读
cpu晶体管为什么会计算

cpu有多少个晶体管

严格意义上讲,晶体管泛指一切以半导体材料为基础的单一元件,包括各种半导体材料制成的二极管、三极管、场...

发表于 2018-03-01 15:37 481次阅读
cpu有多少个晶体管

cpu晶体管如何放进去的

cpu里执行指令计算的是最基本的功能,在这里面,复杂指令机不同的指令分解开了就是一系列微命令,精简指...

发表于 2018-03-01 15:24 158次阅读
cpu晶体管如何放进去的

薄膜电路技术在T/R组件中的应用

薄膜电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微...

发表于 2018-03-01 13:58 138次阅读
薄膜电路技术在T/R组件中的应用

电容自举电路电路图大全(六款电容自举电路设计原理...

本文主要介绍了电容自举电路电路图大全(六款电容自举电路设计原理图详解)。自举电路是指用电容器使放大电...

发表于 2018-03-01 11:12 1282次阅读
电容自举电路电路图大全(六款电容自举电路设计原理...

瓷片电容怎么测好坏

瓷片电容分高频瓷介和低频瓷介两种。具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容...

发表于 2018-02-27 09:54 448次阅读
瓷片电容怎么测好坏

瓷片电容用在什么地方_瓷片电容有正负极吗

瓷片电容是一种用陶瓷材料作介质,在陶瓷表面涂覆一层金属薄膜,再经高温烧结后作为电极而成的电容器。通常...

发表于 2018-02-27 09:39 237次阅读
瓷片电容用在什么地方_瓷片电容有正负极吗

倍压整流用什么电容_倍压整流电路电容多大

本文开始对倍压整流电路结构的优缺点进行了分析,其次介绍了倍压整流电路电容的选择以及分析了倍压整流电路...

发表于 2018-02-26 15:27 1107次阅读
倍压整流用什么电容_倍压整流电路电容多大

5g射频连接器上市公司排名介绍

射频同轴连接器射频同轴连接器的命名方法型号命名射频同轴连接器的型号由主称代号和结构代号两部分组成,中...

发表于 2018-02-26 10:10 596次阅读
5g射频连接器上市公司排名介绍

被动元器件涨声再起 行业巨头订单饱满

进入2018年,电阻、电容等元器件价格继续走高。电容、电阻等被动元器件景气度有望持续,涨价趋势或延续...

发表于 2018-02-15 01:14 3765次阅读
被动元器件涨声再起 行业巨头订单饱满

39种电子元件检验要求与方法

电子元件知识——电阻器、电容器、电感器、半导体器件,集成电路是一种采用特殊工艺,将晶体管、电阻、电容...

发表于 2018-02-14 20:55 2490次阅读
39种电子元件检验要求与方法

隔直电容的作用及原理

在交流环境下,电源频率越大,角频率ω就越大,容抗就越小,当小到与其他阻抗忽略不计时,甚至可以认为是短...

发表于 2018-02-12 11:32 554次阅读
隔直电容的作用及原理

详细解析芯片里面的几千万的晶体管的实现

1、湿洗(用各种试剂保持硅晶圆表面没有杂质) 2、光刻 (用紫外线透过蒙版照射硅晶圆, 被照到...

发表于 2018-02-08 16:41 1133次阅读
详细解析芯片里面的几千万的晶体管的实现

展讯与RDA合并完成 紫光展锐进一步推进国际化布...

今年紫光展锐将强势杀入手机芯片市场,推出自主研发CPU和推进4G芯片与大陆的合作,据悉射频前端业务是...

发表于 2018-02-08 10:47 340次阅读
展讯与RDA合并完成 紫光展锐进一步推进国际化布...

UHF频段无源RFID读写器系统总体方案设计

该模块的设计目标是设计出一款通用的应用于915MHz的射频收发模块,与控制部分通过自定义的I/O接口...

发表于 2018-02-08 07:57 507次阅读
UHF频段无源RFID读写器系统总体方案设计