基于FPGA的OCR文字识别技术的深度解析

来源: 作者:2018年01月26日 12:19
关键词:文字识别fpga

OCR在通用文字识别等场景下有广泛应用,基于FPGA异构加速的OCR识别相比CPU/GPU实现具有延时小、成本低的优势。我们设计了多FPGA芯片协同的异构加速架构,能快速适配业务OCR模型变化,检测识别整体性能为GPU P4 130%,处理延时仅为P4的1/10,CPU的1/30。

1.文字识别技术- OCR

OCR技术,通俗来讲就是从图像中检测并识别字符的一种方法,在证通用文字识别、书籍电子化、自动信息采集、证照类识别等应用场景中得到了广泛应用。通用场景的OCR因此通用场景下的OCR技术一直都是人工智能领域挑战性极强的研究领域,不需要针对特殊场景进行定制,可以识别任意场景图片中的文字。

基于FPGA的OCR文字识别技术的深度解析

通用OCR技术包含两大关键技术:文本检测和文字识别。检测模型的作用简单来说就是确定图片中哪里有字,并把有字的区域框出来。文字识别是将文本检测box作为输入,识别出其中的字符。

近年来深度学习逐渐被应用到音频、视频以及自然语言理解等时序数据建模的领域。通过深度学习的端到端学习提升Sequence Learning的效果已经成为当前研究的热点。基本思路是CNN与RNN结合:CNN被用于提取有表征能力的图像特征,将RNN的序列化特性引入到文本检测,增加了文本检测候选区域的上下文信息,可以有效地提升文本检测任务的性能。CNN+RNN的混合网络将文本串识别领域的效果推到了一个新的高度。

基于FPGA的OCR文字识别技术的深度解析

1:CRNN网络结构

我们以目前应用十分广泛的CRNN模型为例,它是DCNN和RNN的组合,可以直接从序列标签学习,不需要详细的标注;比标准DCNN模型包含的参数要少很多。同时CRNN在图像特征和识别内容序列之间严格保序,擅长识别字分割比较困难的文字序列。

架构包括三部分:

1) 卷积层,从输入图像中提取特征序列,将图像进行空间上的保序压缩,相当于沿水平方向形成若干切片,每个切片对应一个特征向量;

2) 循环层,预测每一帧的标签分布;采用双层双向的LSTM,进一步学习上下文特征,据此得到切片对应的字符类别。

3) TranscripTIon层,利用CTC和前向后向算法求解最优的label序列。

2. OCR加速架构

依赖于FPGA的可编程性、高性能以及高通信带宽,我们设计了一个多FPGA芯片协同的异构加速架构。单一芯片针对一种类型的模型进行深度定制优化,不同芯片之间通过负载均衡以及流水化来完成整个混合模型的加速过程。

基于FPGA的OCR文字识别技术的深度解析

图2:OCR加速硬件架构

FPGA 0配置为通用的CNN加速架构

FPGA 1配置为通用的LSTM加速架构

对于计算量较小的FC使用CPU进行计算,保持模型灵活性

FPGA与服务器CPU通过PCIe Gen3进行数据通信,负载均衡由CPU进行控制

FPGA间通过AURORA轻量级协议进行数据交换,数据交换延时ns级,类似不同板卡间内存共享

平台后续升级可支持服务器间的多任务并行/流水调度

为特定的深度学习模型进行底层深度架构优化,通过架构层面上的优化来充分发挥异构加速器件的性能,达到最大的计算收益。

关注电子发烧友微信

有趣有料的资讯及技术干货

下载发烧友APP

打造属于您的人脉电子圈

关注发烧友课堂

锁定最新课程活动及技术直播
声明:电子发烧友网转载作品均尽可能注明出处,该作品所有人的一切权利均不因本站而转移。
作者如不同意转载,既请通知本站予以删除或改正。转载的作品可能在标题或内容上或许有所改动。
收藏 人收藏
分享:

相关阅读

发表评论

elecfans网友

分享到:

用户评论(0