0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

小鼠听皮层神经元群体结构动态变化实现感觉到范畴的转化

mK5P_AItists 来源:YXQ 2019-07-22 15:13 次阅读

7月8日,《神经元》期刊在线发表了题为《小鼠听皮层神经元群体结构动态变化实现感觉到范畴的转化》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室徐宁龙研究组完成,博士研究生辛宇为该论文第一作者。

该研究通过在头部固定小鼠中建立一套听觉相关的抉择行为任务,同时使用双光子成像技术记录清醒小鼠的听觉皮层第2/3层群体神经元的反应,解析了对感觉信息进行范畴化(categorization)的皮层神经元群体运算机制。负责该项目的研究人员对皮层大量神经元活动进行记录和统计分析,发现在听觉皮层中存在范畴抉择相关的单细胞反应,并且,听觉皮层神经元的信息编码会根据任务需要发生动态变化。这种神经编码的动态变化在群体水平有利于把连续的感觉信息转化为任务相关的范畴信息。研究人员通过对群体神经元活动的解码,也验证了任务态下听皮层神经元活动能够准确预测小鼠执行听觉范畴分类任务的表现。

为什么需要对感觉信息进行分类或范畴化?这是由于人们大脑接收到的来自客观世界的感觉信息纷繁复杂,而人们能够形成的概念和采取的行动则数目有限,为了形成有意义的认知来指导行为,大脑需要对这些信息进行高效的组织管理,而其中最基本的过程就是范畴化(categorization),简单来讲,就是对外来刺激进行分类与定位,从而可以从外部信息中高效地抽提出最相关的信息,形成感知判断。例如,当接收到丰富多样的语音信息,大脑会把这些语音归类到属于不同的熟悉的人,或属于陌生人。当你接到一个电话时,即使因为环境干扰和电话通话噪声等因素而导致语音物理参数发生变化或扭曲,你仍然可以轻而易举识别出电话里的语音是否属于某一个熟人,或属于陌生人。这个过程就涉及到对声音信息的类别判断。另一个例子是关于人们对于色彩的认知。当看到彩虹时,尽管其中可见光的波长实际上是连续变化的,然而人们对于波长的物理数值难以形成感性认知或颜色概念,因此需要将连续的波长信息范畴化,将其定义为离散的七种颜色类别(红橙黄绿青蓝紫),便于信息存储与交流。这说明感觉信息范畴化可以帮助大脑高效存储信息和形成认知。因此,认知心理学研究认为,范畴化是人们对外界形成感知并且做出行动的一个普遍而基本的过程。

大脑如何将复杂而又连续的刺激信息范畴化呢?这里面的神经生物学机制是什么?对于这些问题的解答将使人们对脑认知功能的生物学基础和神经计算原理有更深入的理解。事实上,神经科学家早已意识到这个问题的重要性。美国麻省理工学院(MIT)的著名神经科学家Earl Miller的实验室早在2001年就在Science发表论文,提出猕猴前额叶可以产生视觉信息分类相关的神经活动。该论文的第一作者David Freedman后来(2006年)又在Nature发表论文,提出在后顶叶皮层也有编码视觉分类的神经活动。这些研究开启了信息分类和感知觉范畴化神经机制研究的新领域。但是这些研究中所发现的与感知类别相对应的神经活动,更多地代表神经运算的结果,而感觉信息怎样被转化为离散的类别信息的神经运算过程却并不清楚。

为了探索这个问题,脑智卓越中心的研究人员在小鼠中建立了一个基于听觉的分类抉择行为范式,经过训练,小鼠可以将不同频率的纯音归类到“高音”或“低音”范畴。同时研究人员结合活体双光子成像技术,在动物执行任务的同时对听觉皮层群体神经元活动进行大规模记录,并结合进一步的定量分析,从而研究了大脑皮层的神经元如何通过动态编码将感觉信息转化为类别信息的机制。研究的具体过程是,清醒小鼠在头部固定的情况下被放置在隔音箱内,经过训练它们可以将连续的单一频率声音(6种或者8种)按照设定的类别边界划分成两种类别:低频组或者是高频组,一般小鼠在经过一周的训练后可以达到80%以上的正确率(图A和图B)。随后,开始双光子成像的实验(图C)。对于这些小鼠,研究人员事先在听皮层神经元中利用微量病毒注射的方法表达钙指示剂GCaMP6s蛋白,并埋置长期成像窗口,从而实现对于群体神经元活动的长期稳定记录。

他们的研究发现,在单细胞水平,除了编码声音频率信息的神经元活动之外,在小鼠执行声音分类任务中,出现了两种与分类相关的神经活动。其中一类的神经元表现出对声音类别的特异性反应,类似于前人在前额叶和后顶叶等下游脑区发现的类别相关的神经元。例如图D中的神经元只对于低频类别声音有反应,而对于高频类别几乎没有反应。另外一类神经元则表现出对于类别边界频率声音的选择性反应(图E),而这种声音选择性反应在被动听声音的情况下并不存在,因此是一种任务依赖的动态调整。在群体神经元水平上,他们发现,相对于静息状态的被动刺激,任务态下听皮层对于相同声音的编码在群体构成上出现了动态调整(图F)。进一步通过对群体神经元活动的解码,发现这种动态调整使得听皮层神经元活动能够准确可靠地预测动物的行为任务(图G - H)。因此,该项工作揭示听觉皮层神经元群体可以根据分类任务的需要,动态调整信息编码特性,形成利于提高分类边界分辨能力的群体编码结构,从而提出了感知分类的一个新的神经运算机制。这一成果对于感觉皮层在认知过程中的信息处理机制提出了新的理解和预期,并且可能有助于启发人工智能算法设计的新思路。

该项工作在研究员徐宁龙的指导下,主要由辛宇完成,同时课题组的博士研究生钟林、张园,高级工程师潘璟玮,助理研究员周涛涛也做出了重要贡献。该工作得到国家基金委、国家重点实验室基金、中科院战略性先导科技专项、中科院重点前沿项目、青年千人计划等的资助。

图注:A、头部固定小鼠的行为范式。被动情况下小鼠只需要听声音,不需要做出反应。B、小鼠行为学的心理物理曲线。C、双光子成像示意图。D、对于声音的类别有选择性反应的示例神经元。E、对于类别的分界处的声音有特意选择性的示例神经元。F、使用群体神经元活动来预测单次实验中小鼠的行为,与小鼠实际的行为选择具有显著的相关性。G、群体神经元活动的解码结果跟小鼠的抉择行为显著相关。H、通过解析群体神经元活动得到的神经测量曲线跟小鼠行为学的心理物理曲线高度相似。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 麻省理工
    +关注

    关注

    0

    文章

    39

    浏览量

    12222
  • 神经元
    +关注

    关注

    1

    文章

    284

    浏览量

    18319

原文标题:研究揭示听觉皮层编码听觉认知的新机制

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    通过大小鼠无创血压测量实验明白了无创血压测量技术的重要性

    ,掌握无创血压测量技术对于医学研究具有重要意义。 不同动物种群之间的差异性:不同动物种群之间存在一定的生理差异,这些差异可能会影响无创血压测量结果的准确性。例如,大鼠和小鼠的心脏大小、血管结构等方面存在
    发表于 04-22 09:40

    英特尔发布新一代神经拟态系统Hala Point,11.5亿神经元,12倍性能提升

    作为英特尔首个神经元数量达到11.5亿的神经拟态系统,Hala Point为更高效、规模更大的AI开辟了道路。   英特尔发布了代号为Hala Point的大型神经拟态系统。Hala Point
    的头像 发表于 04-19 09:43 222次阅读
    英特尔发布新一代<b class='flag-5'>神经</b>拟态系统Hala Point,11.5亿<b class='flag-5'>神经元</b>,12倍性能提升

    一种具有高度柔性与可塑性的超香肠覆盖式神经元模型

    人工神经网络是模拟人脑神经活动的重要模式识别工具,受到了众多科学家和学者的关注。然而,近年来DNN的改进与优化工作主要集中于网络结构和损失函数的设计,神经元模型的发展一直非常有限。
    的头像 发表于 12-04 11:12 211次阅读
    一种具有高度柔性与可塑性的超香肠覆盖式<b class='flag-5'>神经元</b>模型

    柔性触觉传感阵列+深度学习实现健康监测和纹理识别

    人类依靠皮肤真皮层中的感受器和与其相连的神经元网络来实现触觉感知。这些感受器能够检测来自外部的各种物理刺激(如触摸、压力、温度变化等),并通过神经元
    的头像 发表于 10-12 09:17 618次阅读
    柔性触觉传感阵列+深度学习<b class='flag-5'>实现</b>健康监测和纹理识别

    基于光敏单层MoS₂忆阻晶体管的仿生视觉触觉神经元

    感觉整合的另一个主要特点是,多感觉增强通常与被整合的单个线索的强度成反比。这被称为反效果效应,具有直观意义,因为高度突出的单模态刺激会在相应的单感觉神经元中唤起强烈的反应,这种反应很容易被检测到。
    发表于 09-25 12:39 252次阅读
    基于光敏单层MoS₂忆阻晶体管的仿生视觉触觉<b class='flag-5'>神经元</b>

    随温度变化动态电压缩放实现

    电子发烧友网站提供《随温度变化动态电压缩放实现.pdf》资料免费下载
    发表于 09-13 17:45 0次下载
    随温度<b class='flag-5'>变化</b>的<b class='flag-5'>动态</b>电压缩放<b class='flag-5'>实现</b>

    不可错过!人工神经网络算法、PID算法、Python人工智能学习等资料包分享(附源代码)

    先了解生物神经元模型。 >>>点击查看下载资料 2.Python编程:从入门实践 如何学习编写第一个程序,每个程序员都有不同的故事。我还是个孩子时就开始学习
    发表于 09-13 16:41

    一文详解CNN

    。对应数学模型的输出。 多层感知器(MLP): 单层的感知器只能解决一些简单的线性问题,面对复杂的非线性问题束手无策,考虑输入信号需要经过多个神经元处理后,最后得到输出,所以发展出来了多层感知器,引入
    发表于 08-18 06:56

    压电陶瓷驱动器单神经元自适应磁滞补偿实验

    功率放大器基于Hebb学习规则的压电陶瓷驱动器单神经元自适应磁滞补偿
    发表于 08-03 14:42 0次下载

    什么是神经网络?为什么说神经网络很重要?神经网络如何工作?

    神经网络是一个具有相连节点层的计算模型,其分层结构与大脑中的神经元网络结构相似。神经网络可通过数据进行学习,因此,可训练其识别模式、对数据分类和预测未来事件。
    的头像 发表于 07-26 18:28 1957次阅读
    什么是<b class='flag-5'>神经</b>网络?为什么说<b class='flag-5'>神经</b>网络很重要?<b class='flag-5'>神经</b>网络如何工作?

    神经元 C 参考指南

    神经元 C 参考指南
    发表于 07-04 20:48 0次下载
    <b class='flag-5'>神经元</b> C 参考指南

    神经元汇编语言参考

    神经元汇编语言参考
    发表于 07-04 20:47 0次下载
    <b class='flag-5'>神经元</b>汇编语言参考

    神经元 6050 数据表

    神经元 6050 数据表
    发表于 07-04 20:41 0次下载
    <b class='flag-5'>神经元</b> 6050 数据表

    神经纤维的三维结构展示

    此案例为Thy1-GFP M-line转基因小鼠部分脑块的神经纤维精细三维结构,体素分辨率为0.32 μm×0. 32 μm×1 μm,Movie中的绿色信号为小鼠鼠脑
    的头像 发表于 06-19 07:09 445次阅读
    <b class='flag-5'>神经</b>纤维的三维<b class='flag-5'>结构</b>展示

    基于神经元时序编码的全新ANN-SNN转换方法

    “为了充分发挥类脑芯片事件驱动、低功耗的潜力,SynSense时识科技提出利用TTFS的神经元脉冲编码方式和增加额外的1或2个突触,即可实现10-50倍网络运算稀疏度的提升。”
    的头像 发表于 05-26 09:27 892次阅读
    基于<b class='flag-5'>神经元</b>时序编码的全新ANN-SNN转换方法