0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳米颗粒药物可以在血液中穿梭,实现精准靶向给药

电子工程师 来源:YXQ 2019-05-06 10:10 次阅读

纳米颗粒药物可以在血液中穿梭,直达病灶,实现精准靶向给药,在治疗肿瘤等疾病上潜力巨大。但受到血流阻力和血管壁阻碍,相关研究一直面临着药物输送困难的问题,现有技术尚未完全发挥纳米颗粒的最大价值。

因此,如何让更多的药物穿过血管,并且在正确的位置聚集,是很多团队的研究重点。

最近,麻省理工学院(MIT)的工程师们设计出了一种微型机器人,由 3D 打印而成,其大小和细胞类似,整体呈螺旋结构,表面涂有镍钛双涂层,可以通过外部磁场控制。

在磁力的帮助下,它们能够克服血流阻力,穿越血管壁,向肿瘤等病变组织输送纳米颗粒药物,实现精准而深入的药物输送,效果是普通输送方法的两倍。研究团队还尝试了天然存在的趋磁细菌,也实现了类似的效果。

图 | 微型机器人(左上)和趋磁细菌(右上)(来源:MIT)

未来,他们将尝试输送更大的纳米颗粒,还计划展开动物实验,进一步探索提升药物输送效率的方法。

研究团队的负责人是麻省理工学院的 Sangeeta Bhatia 教授和苏黎世联邦理工学院助理教授(前麻省理工学院博士后)Simone Schuerle。研究成果发表于《科学进展》期刊上。

人造鞭毛

为了解决药物输送困难的问题,研究团队将目光转向了微型磁性机器人,探索磁场和磁力能否用来提高药物的传输效率。

研究人员首先使用了高分辨率 3D 打印技术,制造出长度约为 36 微米,体积只有细胞大小的微型机器人(微米级别),从而保证它能够穿过血管。

他们借鉴了细菌的移动机制,将机器人的形状确定为螺旋状,并称其为“人造细菌鞭毛(ABF)”——一些细菌身上长有数量不等的鞭状螺旋形细丝,被称为“鞭毛”,可以帮助自身移动。这种螺旋形状可以帮助机器人更好地在血液中移动。

最后他们在机器人的表面涂上了镍钛双涂层,使其具有磁性,能够通过外部磁场控制。

图 | 3D 打印的螺旋体,可以在磁场的控制下移动(来源:MIT)

为了测试机器人能否“掌控”周围的纳米颗粒,研究团队开发了一种模拟肿瘤周围血管的微流体系统(模型)。该系统中的血管通道宽度在 50 到 200 微米之间,内部覆盖有凝胶,上面还有不规则分布的孔洞,用来模拟肿瘤附近的破裂血管。

他们使用磁铁控制机器人的行动,使其在通道中旋转和移动。机器人的移动方向经过特殊设计,正好与液体流动方向相反, 因此两者形成了对流,机器人也可以保持在特定位置。随后,对流会将大小约 200 纳米的聚苯乙烯颗粒推向模型中的目标组织。

实验结果显示,在微型机器人的帮助下,纳米颗粒渗入组织的深度是没有帮助时的两倍,输送效率大幅提升

图 | 在体液流动中保持位置的微型机器人,其背后是纳米级聚苯乙烯颗粒(来源:MIT)

这样的药物输送模式有望与支架结合。静止的支架可以成为很好的目标,适合作为磁场的瞄准对象,然后用微型机器人输送药物,缓解支架部位出现的发炎等症状。

趋磁细菌

除了微型机器人,研究团队还尝试了另一种办法:利用磁场操控自然界中存在的趋磁细菌,用它们输送药物颗粒。他们使用的细菌名为Magnetospirillum magneticum,可以天然生成氧化铁链,用来帮助自身定位和寻找合适的环境。

如果将这些细菌放入微流体模型中,再在特定方向上施加旋转磁场,它们就会同步旋转并沿相同方向移动,同时拉扯和带动周围的纳米颗粒,使其渗入目标组织。

结果显示,在趋磁细菌的帮助下,纳米颗粒的渗入速度是普通状态下的三倍。

图 | 趋磁细菌可以带动周围的纳米颗粒(来源:MIT)

研究人员表示,相比微型机器人,使用天然细菌输送药物更适用于治疗肿瘤等疾病,因为病灶区域的视觉反馈信息难以获取。

值得一提的是,实验之中使用的纳米颗粒足以携带大量有效药物或成分,不仅可以针对肿瘤,还可以用于 CRISPR 基因编辑技术,具有很强的拓展性

未来,研究团队计划在动物模型上展开实验,探索两种方法的可行性,希望有朝一日可以用来帮助治疗人类的疾病。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米
    +关注

    关注

    2

    文章

    678

    浏览量

    36676
  • MIT
    MIT
    +关注

    关注

    3

    文章

    253

    浏览量

    23248
  • 微型机器人
    +关注

    关注

    0

    文章

    110

    浏览量

    19353

原文标题:MIT团队发明受磁场操控的微型机器人,实现更精准的靶向给药

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    利用微流控芯片,实现纳米颗粒的按需可控制备

    纳米颗粒(AgNP)因其独特的抗菌、抗病毒性质,在医学、牙科、纺织、塑料、光伏技术和信息处理设备等领域有广泛的应用前景。
    的头像 发表于 04-22 17:15 350次阅读
    利用微流控芯片,<b class='flag-5'>实现</b>银<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>的按需可控制备

    STM32G4多个参数如何实现精准的计时?

    电压电流等十余个参数需要做到超过额定值一定的时间后输出故障指示 请问多个参数如何实现精准的计时?多个参数的计时又不能互相影响? 也许同一时间只有一个参数会超过额定值,也许同一时间有多个参数超过额定值
    发表于 03-11 07:48

    用于微纳机器人多级磁控递送研究的体外测试平台

    基于微纳机器人的靶向递送技术在疾病诊断治疗、精准药物递送、无创手术等生物医学领域具有广阔的应用前景。
    的头像 发表于 01-13 11:29 826次阅读
    用于微纳机器人多级磁控递送研究的体外测试平台

    使用ICP-MS/MS进行光伏硅片表面Ti纳米颗粒表征的实验过程

    使用至光伏/半导体制造工艺的不同环节中,这可能会带来更多新材料成分的纳米颗粒潜在污染,亟需对硅片表面纳米颗粒进行尺寸和数量的表征。
    的头像 发表于 01-11 11:29 499次阅读
    使用ICP-MS/MS进行光伏硅片表面Ti<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>表征的实验过程

    子母式微纳米机器人系统,用于颅内跨尺度靶向给药

    该团队分别在体外胶质瘤细胞微环境和离体猪脑组织内开展了试验。结果表明,微纳米机器人可远距离递送到指定病灶,释放药物杀死胶质瘤细胞。这验证了该研究所提出的子母式微纳米机器人跨尺度递送方法的可行性。
    的头像 发表于 12-26 16:40 220次阅读
    子母式微<b class='flag-5'>纳米</b>机器人系统,用于颅内跨尺度<b class='flag-5'>靶向</b>给药

    用于纳米材料合成的微流控技术综述

    纳米材料具有独特的物理化学性质,其作为新一代药物给药剂型日益受到重视。纳米材料的小尺寸能够增加药物负载能力,延长药物
    的头像 发表于 12-12 16:59 302次阅读
    用于<b class='flag-5'>纳米</b>材料合成的微流控技术综述

    什么是聚集度指数PDI粒径分布-LNP脂质纳米颗粒的PDI的影响因素

    性能影响很大。例如,制备纳米材料时,如果颗粒尺寸分布不均匀,则会影响其光学、电学、磁学等性能;制备药物时,如果
    发表于 11-28 13:38

    用于研究单个纳米颗粒表面的显微光谱

    能保证完全的分子交换。单纳米颗粒散射实验可以深入了解分子交换的程度,峰移和展宽与分子附着的增加相关。这种方法的优点是它不受常用的体集成测量期间固有存在的同源展宽的影响。 András Deák研究的另一个方面集中在自组装上,即
    的头像 发表于 11-15 10:33 202次阅读
    用于研究单个<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>表面的显微光谱

    8gu盘闪存颗粒坏了, 可以自己换16g或者更大的闪存颗粒吗?

    8gu盘闪存颗粒坏了 可以自己换16g或者更大的闪存颗粒
    发表于 11-01 06:47

    金属纳米颗粒通过水基剥离方案使用嵌段共聚物模板

    随着纳米结构表面和界面在广泛的科学和技术应用中变得越来越重要,确定可扩展和廉价的方法来实现这些变成了一个关键的挑战。特别是有序、非密集、表面支撑的金属纳米颗粒的大面积阵列的制造,由于其
    的头像 发表于 10-26 15:33 212次阅读
    金属<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>通过水基剥离方案使用嵌段共聚物模板

    更快,更稳,更智能,穿梭车(RGV)快速构建方案!

    随着自动化物流发展,密集存储得到越来越广泛地应用,已经是现代物流的重要组成部分之一。作为密集存储系统中关键设备之一,穿梭车(RGV)越来越受到大家的重视。穿梭车(RGV)是一种智能机器人,可以编程
    的头像 发表于 09-22 15:38 1018次阅读
    更快,更稳,更智能,<b class='flag-5'>穿梭</b>车(RGV)快速构建方案!

    基于芯片的拉曼光谱技术来监测患者血液中的药物浓度

    据麦姆斯咨询报道,总部位于比利时的初创公司Axithra主要开发基于芯片的拉曼光谱技术来监测患者血液中的药物浓度,近期已筹集了1000万欧元的种子资金。
    的头像 发表于 09-14 09:28 1271次阅读

    清剂产生液体颗粒污染主要原因及管控办法

    清洗剂液体颗粒计数器. 采用英国普洛帝核心技 术创新型的第八代双激光窄光颗粒检测传感器,双精准流量控制-精 密计量柱塞泵和超精密流量电磁控制系统,可以对清洗剂、半导体、 超纯水、电子产
    的头像 发表于 06-09 11:12 294次阅读
    清剂产生液体<b class='flag-5'>颗粒</b>污染主要原因及管控办法

    基于银纳米颗粒/铜纳米线复合材料的电化学无酶葡萄糖传感器

    研究人员首先对银纳米颗粒/铜纳米线进行了合成,并对制备的铜纳米线和化学沉积后负载不同尺寸银纳米颗粒
    的头像 发表于 05-12 15:19 715次阅读
    基于银<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>/铜<b class='flag-5'>纳米</b>线复合材料的电化学无酶葡萄糖传感器

    功率放大器在磁性微纳米颗粒微流体操控研究中的应用

    了不同因素对成链的影响。探索了一种新的流场显示方法,利用磁性纳米链对微尺度下气泡溃灭时的流场进行显示;还通过气泡驱动-磁场导航的方式, 对非均匀型磁性颗粒进行精准操控,实现了微尺度下微
    的头像 发表于 05-08 11:35 283次阅读
    功率放大器在磁性微<b class='flag-5'>纳米</b><b class='flag-5'>颗粒</b>微流体操控研究中的应用