0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为何现在进入氮化镓射频市场机会已经不大?

kus1_iawbs2016 来源:YXQ 2019-04-26 16:56 次阅读

“现在正处于从LDMOS转到氮化镓的时间窗口,但只有三年。”能讯半导体总经理任勉表示,在氮化镓领域耕耘十二年,能讯半导体迎来关键时间节点,抓住5G基站建设机会,就可以在竞争中占据有利位置。

当前基站与无线回传系统中使用的大功率射频器件(功率大于3瓦),主要有基于三种材料生产的器件,即传统的LDMOS(横向扩散MOS)、砷化镓(GaAs),以及新兴的氮化镓(GaN)。市场调研机构Yole(YoleDeveloppement)的2017年7月的报告预测,未来5到10年,砷化镓在大功率射频器件市场上所占比例基本维持稳定,但LDMOS与氮化镓将呈现出此消彼长的关系。2025年,LDMOS占比将由现在的40%左右下降到15%,而氮化镓将超越LDMOS和砷化镓,成为大功率射频器件的主导工艺,占比到2025年可达45%左右。2019年至2021年为5G基础设施建设的关键期,也将是氮化镓器件替换LDMOS的关键期。

GaN与LDMOS未来趋势

数据来源:Yole

为何氮化镓会取代LDMOS?

氮化镓是宽禁带工艺,其禁带宽度(3.4eV)是普通硅(1.1eV)的3倍,击穿电场是硅材料的10倍,功率密度高,可以提供更高的工作频率、更大的带宽、更高的效率,可工作环境温度也更高。由于成本优势,LDMOS在低频仍有生存空间,但氮化镓已经在向低频渗透,例如在2.6GHz频段,也开始出现氮化镓方案。

“按照业界理解,3.5GHz是一个分水岭,3.5GHz及以上频率,氮化镓工艺有全面的优势,无论是带宽、线性度、增益还是效率,硅器件都无法与氮化镓竞争,”任勉分析道,由于工艺输出功率特性限制,LDMOS在3.5GHz及以上频率不能提供足够大的功率,所以从3.5GHz到未来的毫米波,高频应用中氮化镓不是去替代LDMOS,而是开辟全新的市场空间,“往高频走,氮化镓是必然的选择,因为需要更大的带宽,更好的线性度,将来走MIMO(多入多出)方案,一台基站里面就要用几百个PA(功率放大器),5G和高频化应用,让氮化镓大有用武之地。以前大家觉得射频器件只是一两百亿(美元)的市场,规模不大,但5G时代不是,5G有小基站,基站部署数量将呈指数形式增长,所以5G时代,射频器件产业将比以往大得多。”任勉认为,近年来的氮化镓投资热潮,即来自于对这一趋势的认同。

成本曾是氮化镓取代LDMOS的最大障碍,如今这一障碍正在逐渐消失。氮化镓工艺常用衬底有两种,一种是用硅材料,一种是用碳化硅材料。除了MACOM,主流氮化镓器件公司都采用碳化硅衬底,基于碳化硅衬底的氮化镓器件比硅衬底氮化镓器件性能更好,良率更高,更能体现氮化镓材料优势,但碳化硅衬底成本更高。

能讯半导体生产的氮化镓器件

及参考设计

不过衬底成本正在伴随制造工艺的进步而快速下降,大尺寸衬底均摊成本更低。据任勉介绍,采用6英寸碳化硅衬底制造出的器件,衬底成本占整个器件成本比例已经不到10%。“氮化镓主要用金属陶瓷封装,封装成本占到整个器件成本的三分之一到一半,这是很可怕的成本,所以业界在拼命努力开发各种降低成本的封装方式,”任勉表示,封装的成本更值得关注,业界已经在尝试纯铜、塑封、空腔塑封等形式来替代金属陶瓷封装,但由于金属陶瓷封装在性能、散热与可靠性上的优势,仍然是氮化镓器件的首选封装。

为何氮化镓产业更适合IDM模式?

氮化镓封装成本高,建设封装产线的投入也很大,据任勉估算,100万支产能的金属陶瓷封装线,仅设备投入就要六七千万元,但能讯还是自建了封装线,这样可以保证产品一致性,也符合通讯设备商对其关键元器件供应商的在产品质量方面的要求。

事实上,从材料衬底外延、芯片制造,到最终的封装测试,三大制造环节能讯全部都做,即所谓的整合元件制造商(IDM)模式。“材料结构与工艺密切相关,而工艺又决定了产品最终的电学性能,材料、设计、制造与封测一体相关,所以氮化镓行业基本以IDM为主导,设计公司暂时还不太有市场。”任勉告诉TechSugar,现阶段只有IDM模式最适合氮化镓产业。射频与功率器件集成度不高,设计变化不多,设计环节附加值较低,再加上现在氮化镓产业本身规模不大,因此设计业很难独立生存。

不过任勉也表示,高频率器件或毫米波等应用普及以后,随着市场规模增大,代工模式将有可生存的空间。

如前所述,因为材料、工艺与设计紧密结合是射频或功率器件竞争的主导性因素,所以全球成功的射频或功率器件公司,多数都采用IDM模式,IDM模式对产品全流程的管控能力更高,但所有产线都自己来建设,进入门槛很高。

能讯半导体厂房内部

除此之外,能讯在氮化镓电力电子领域进行了技术储备。能讯的“讯”代表通信,而“能”则代表能讯关注的另一个方向,即电力电子领域的功率应用。相比硅器件,氮化镓做功率器件也有诸多优势,但氮化镓在电力电子领域应用的技术路线现在尚未确定,所以在电力电子领域,能讯维持研发投入,目前尚无量产计划。

能讯半导体从成立到现在已经进行了三轮融资,总共投入约10亿人民币,其第一规模工厂(FAB1)位于苏州昆山高新区,工厂占地55亩,厂房面积为18000平方米,经过第三轮5亿元融资后,现有产线改造扩容结束将具备年处理4英寸氮化镓晶圆5万片(约折合2000万支器件)的能力。如果氮化镓器件能在5G市场部署时如期爆发,能讯将会规划建设第二个工厂,第二工厂必然会建6英寸产线,届时投入将会是一厂的三倍以上。

为何现在进入氮化镓射频市场机会已经不大?

但在氮化镓领域,即便资金不是问题,也不意味着就能胜出,时间窗口至关重要。即使完全不考虑资金限制,从无到有建设一条能量产出货的氮化镓产线也需要五年左右时间。“从拿地开始算,做完厂区设计及建设,到可以进设备至少需要两年;从进设备到工艺走通实现量产,至少需要一年时间;产品可靠性稳定,至少一年时间;客户认证,一年左右时间,加起来就是五年。而且各阶段环环相扣,很难同步进行,”谈及产线建设,任勉如数家珍,“工艺调不通无法做可靠性,可靠性不稳定,不敢拿给客户做认证,这五年时间谁都省不掉。所以,能讯并不担心其他企业一拥而上做氮化镓,如果你现在刚开始做,等五年以后再谈与我们竞争。后来者一定要想清楚,自己真正的优势在哪里。”

能讯半导体厂貌

任勉强调,就芯片产品而言,只有解决可制造性、可靠性与可应用性,技术才能落地,在实验室做得很好的产品,到最终大规模量产被客户接受,要跨越的距离远超很多技术专家的想象。国内产业发展多见一窝蜂上的现象,但在半导体市场,不尊重行业规律盲目投资,很难获得想要的收益。

即使不考虑后来者,当前射频氮化镓市场厂商竞争也非常激烈,面对5G设备部署良机,住友、科锐、恩智浦、英飞凌Qorvo等国外巨头再加上国内能讯、13所、55所等近十家厂商谁都不会退让。大家都加大投入赌这次机会,氮化镓排名前几的厂商,性能指标交替发展,“没有哪一家永远第一,厂商各领风骚一段时间,”任勉认为,乱世之争很可能在三年后结束,而且市场格局一旦建立,就很难打破。

任勉判断,未来氮化镓市场很有可能只有4-5家能生存下来,只有进入前三,才能获得较好的投资效益。拼到前三的方法,任勉总结为两点:技术领先与快速上规模。经过12年研发、产能建设与经验积累,能讯半导体已经开始出货给通信设备厂商,移动通信每一次更新换代,都是一次洗牌的机会,5G设备换代将是能讯半导体冲击世界品牌的最好机会,不容有失。

虽然多次强调危机感,但任勉对活下来显然也很有信心,他说:“在射频领域为中国半导体立一块品牌,是能讯的理想。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    100

    文章

    5331

    浏览量

    165704
  • 氮化镓
    +关注

    关注

    52

    文章

    1484

    浏览量

    114734

原文标题:能讯半导体:5G时间窗口只有三年

文章出处:【微信号:iawbs2016,微信公众号:宽禁带半导体技术创新联盟】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    #氮化 #英飞凌 8.3亿美元!英飞凌完成收购氮化系统公司 (GaN Systems)

    半导体氮化
    深圳市浮思特科技有限公司
    发布于 :2023年10月25日 16:11:22

    氮化芯片未来会取代硅芯片吗?

    氮化 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化(GaN)是一种宽带隙半导体材料。 当用于电源时,GaN 比传统硅具有更高的
    发表于 08-21 17:06

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    功率/高频射频晶体管和发光二极管。2010年,第一款增强型氮化晶体管普遍可用,旨在取代硅功率MOSFET。之后随即推出氮化功率集成电路-
    发表于 06-25 14:17

    氮化(GaN)功率集成电路集成和应用

    氮化(GaN)功率集成电路集成与应用
    发表于 06-19 12:05

    纳微集成氮化电源解决方案和应用

    纳微集成氮化电源解决方案及应用
    发表于 06-19 11:10

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    为什么氮化比硅更好?

    超低的电阻和电容,开关速度可提高一百倍。 为了充分利用氮化功率芯片的能力,电路的其他部分也必须在更高的频率下有效运行。近年加入控制芯片之后,氮化充电器的开关频率,
    发表于 06-15 15:53

    氮化: 历史与未来

    高效能、高电压的射频基础设施。几年后,即2008年,氮化金属氧化物半导场效晶体(MOSFET)(在硅衬底上形成)得到推广,但由于电路复杂和缺乏高频生态系统组件,使用率较低。
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成式氮化
    发表于 06-15 15:35

    氮化功率芯片的优势

    容易使用。通过简单的“数字输入、电源输出”操作,布局和控制都很简单。dV/dt 回转率控制和欠压锁定等功能,确保了氮化功率芯片能最大限度地提高“一次性成功”的设计的机会,从而极为有效地缩短了产品上市
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例中,氮化
    发表于 06-15 14:17