0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

嵌入式ARM与MMU神秘的内部世界!一目了然

Q4MP_gh_c472c21 来源: 聂磊 作者:电子发烧友 2019-03-01 15:02 次阅读

ARM MMU页表框架

先上一张arm mmu的页表结构的通用框图(以下的论述都由该图来逐渐展开):

以上是arm的页表框图的典型结构,即是二级页表结构。

其中第一级页表(L1)是由虚拟地址的高12bit(bits[31:20])组成,所以第一级页表有4096个item,每个item占4个字节,所以一级页表的大小为16KB,而在第一级页表中的每个entry的最低2bit可以用来区分具体是什么种类的页表项,2bit可以区分4种页表项,具体每种页表项的结构如下:

简而言之L1页表的页表项主要有两大类:

  • 第一大类是指向第二级页表(L2页表)的基地址;

  • 第二类直接指向1MB的物理内存。

在L1页表中每个表项可以覆盖1MB的内存,由于有4096K个选项(item),所以总计可以覆盖4096K*1MB=4GB的内存空间。

具体对应到Linux,由于Linux的软件架构是支持3级页表结构,而arm架构实际只有2级的页表结构,所以linux代码中的中间级页表的实现是空的。在linux代码中,第一级的页表的页目录表项用pgd表示,中间级的页表的页目录表项用pud表示(arm架构其实不需要),第三级的页表的页目录表项用pmd表示(由于中间pud是空的,所以pgd=pmd),另外目前arm体系的移动设备中RAM的page大小一般都是4KB/page,所以L1页表中的页表项都是指向fine page table的。

但在linux内核启动的初始化阶段,临时建立页表(initial page tables)以供linux内核初始化提供执行环境,这时L1的页表项使用的就是第二种页表项(section enty),他直接映射的是1M的内存空间。具体的可以参考arch/arm/kernel/head.S中的__create_page_tables函数,限于篇幅,这里就不展开说了。

针对这种section page translation,mmu硬件执行虚拟地址转物理地址的过程如下:

以上在初始化过程使用的临时页表(initial page tables),在内核启动的后期会被覆盖掉,即在paging_init--->map_lowmem函数中会重新建立页表,该函数为物理内存从0地址到低端内存(lowmem_limit)建立一个一一映射的映射表。所谓的一一映射就是物理地址和虚拟地址就差一个固定的偏移量,该偏移量一般就是0xc0000000(呵呵,为什么是0xc0000000?)。

说到这里引入一个重要的概念,就是与低端内存相对的高端内存,什么是高端内存?为什么需要高端内存?为了解析这个问题,我们假设我们使用的物理内存有2GB大小,另外由于我们内核空间的地址范围是从3G-4G的空间,并且前面也说到了,linux内核的低端内存空间都是一一映射的,如果不引入高端内存这个概念,全部都使用一一映射的方式,那内核只能访问到1GB的物理内存,但实际上,我们是需要内核在内核空间能够访问所有的4GB的内存大小的,那怎么做到呢?

方法就是我们不让3G-4G的空间都使用一一映射,而是将物理地址的[0x00,fix_addr](fix_addr<1GB)映射到内核空间虚拟地址[0x00+3G,fix_addr+3G],然后将[fix_addr+3G,4G]这段空间保留下来用于动态映射,这样我们可以通过这段虚拟地址来访问从fix_addr到4GB的物理内存空间。怎么做到的呢?

譬如我们想要访问物理地址[fix_addr,4GB]这段区间中的任何一段,我就用宝贵的内核虚拟地址[fix_addr+3G,4G]的一段去映射他,建立好mmu硬件使用的页表,访问完后,将映射清除,将内核的这段虚拟地址释放,以供下次访问其他的物理内存使用。这样就可以达到访问所有4GB的物理内存的目的

那么内核代码是如何建立映射表的呢?

我们着重从arch/arm/mm/mmu.c中的create_mapping函数来分析。在分析之前我们先看下arm mmu硬件是如何在二级页表结构中,实现虚拟地址转物理地址的。

先贴出原代码(arch/arm/mm/mmu.c),该函数的功能描述如下:

Create the page directory entries and any necessary page tables for the mapping specified by `md'. We are able to cope here with varying sizes and address offsets, and we take full advantage of sections and supersections.

line737-line742:参数合法性检查,该函数不为用户空间的虚拟地址建立映射表(记得多问自己一个为什么?)

line744-line750:如果是iomemory,则映射的虚拟地址范围应属于高端内存区间,由于我们这里是常规的memory,即type为MT_MEMORY,所以不会进入该分支。

line775: 获得该虚拟地址addr属于第一级页表(L1)的哪个表项,详细跟踪pgd_offset_k函数(定义在:arch/arm/include/asm/pgtable.h),你会发现,我们内核的L1页目录表的基地址位于0xc0004000,而我们的内核代码则是放置在0xc0008000开始的位置。而从0xc0004000到0xc0008000区间大小是16KB,刚好就是L1页表的大小(见文章开头的描述)。

在这里需要注意一个概念:内核的页目录表项和进程的页目录表项,内核的页目录表项是对系统所有进程都是公共的;而进程的页目录表项则是跟特定进程相关的,每个应用进程都有自己的页目录表项,但各个进程对应的内核空间的页目录表相都是一样的。正是由于每个进程都有自己的页目录表相,所以才能做到每个进程都可以独立拥有属于自己的[0,3GB]的内存空间。

line778pgd_addr_end()确保[addr,next]地址不会跨越一个L1表项所能映射的最大内存空间2MB(为什么是2MB而不是1MB呢?这个是linux的一个处理技巧,以后再详细展开说)。

line780alloc_init_pud()函数为定位到的L1页目录表项pgd所指向的二级页表(L2)建立映射表。

line784 pdg++下移L1页目录表项pgd,映射下一个2MB空间的虚拟地址到对应的2MB的物理空间。

在这里解析下,为什么L1页目录表项pgd能够映射2MB的虚地地址空间。

在本文的第一个图中,他是arm典型的mmu映射框架图,但并不是linux的,linux映射框架图在它的基础做了些调整和优化。

linux所做的调整描述如下(以下摘自linux内核:arch/arm/include/asm/pgtable-2level.h中提供的注释说明):

/** Hardware-wise, we have a two level page table structure, where the first* level has 4096 entries, and the second level has 256 entries. Each entry* is one 32-bit word. Most of the bits in the second level entry are used* by hardware, and there aren't any "accessed" and "dirty" bits.** Linux on the other hand has a three level page table structure, which can* be wrapped to fit a two level page table structure easily - using the PGD* and PTE only. However, Linux also expects one "PTE" table per page, and* at least a "dirty" bit.** Therefore, we tweak the implementation slightly - we tell Linux that we* have 2048 entries in the first level, each of which is 8 bytes (iow, two* hardware pointers to the second level.) The second level contains two* hardware PTE tables arranged contiguously, preceded by Linux versions* which contain the state information Linux needs. We, therefore, end up* with 512 entries in the "PTE" level.** This leads to the page tables having the following layout:*

重要调整说明如下:

L1页表从4096个item变为2048个item,但每个item的大小从原来的4字节变为8个字节。

一个page中,放置2个L2页表,每个还是256项,每项是4个字节,所以总计是256*2*4=2KB,放置在page页的下半部,而上部分放置对应的linux内存管理系统使用的页表,mmu硬件是不会去使用它的。所以刚好 占满一个page页的大小(4KB),这样就不浪费空间了。

有了上面基础,下面再详细的分析以上的line780的函数alloc_init_pud,该函数会最终调用到alloc_init_pte函数:

line598early_pte_alloc函数判断对应的pmd所指向的L2页表是否存在,如果不存在就分配L2页表,如果存在就返回L2页表所在page页的虚地址。

line572 判断pmd所指向的L2页表是否存在,不存在则通过early_alloc 函数分配PTE_HWTABLE_OFF(512*4=2KB)+PTE_HWTABLE_SIZE(512*4=2KB)总计4KB的一个物理页来存储2个linuxpet 页表+2个hwpte页表。

line574返回这个物理页所在虚拟地址,

回到alloc_init_pte函数的line599。

line183pte_index用来确定该虚拟地址在L2页表中的偏移量。即虚拟地址的bit[12~21]共计9个bit,刚好用于寻址两个L2页表(总计512项)。

回到alloc_init_pte函数,其中line605行,是设置L2页表中addr所定位到的页表项(即pte),主要工作就是填充对应物理页的物理地址,以供mmu硬件来实现地址的翻译。

line604~line607循环填充完两个hwpte页表,完成一个2M物理内存的映射表的建立。

line608 将最终调用如下函数:static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte,pmdval_t prot)

在执行这个函数之前,2个L2页表已经建立,该函数的作用就是设置L1页表的对应表项,使其指向刚建立的2个L2页表(hwpte0,hwpte1),正如前面所说,由于linux的L1页表项是8个字节大小,所以:

  • line133 将头4个字节指向hwpte0页表,

  • line135 将后4个字节指向hwpte1页表,至此L1---〉L2页表的关联已经建立。

  • line137 是刷新TLB缓冲,使系统的cpu都可以看见该映射的变化

至此已完成struct map_desc *md结构体所指定的虚拟地址到物理地址的映射关系的建立,以供硬件mmu来自动实现虚拟到物理地址的翻译。

以上过程,有选择的将某些细节给省略了,限于篇幅,另外如果明白了这个过程,很细节的可以自己去看相关的代码。譬如上面的set_pte_ext函数,会调用的汇编函数来实现pte表项的设置。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    134

    文章

    8643

    浏览量

    361652
  • 嵌入式
    +关注

    关注

    4976

    文章

    18246

    浏览量

    287941
  • MMU
    MMU
    +关注

    关注

    0

    文章

    91

    浏览量

    17924

原文标题:带你走进嵌入式ARM与MMU神秘的内部世界

文章出处:【微信号:gh_c472c2199c88,微信公众号:嵌入式微处理器】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    文道破傅里叶变换的本质,优缺点一目了然

    傅里叶变换的公式为: 可以把傅里叶变换也成另外种形式: 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等
    发表于 03-12 16:06

    ARM嵌入式Linux 系统开发从入门到精通

    ARM嵌入式Linux 系统开发从入门到精通
    发表于 03-10 18:44

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智
    发表于 02-26 10:17

    嵌入式硬件和软件哪个好?

    方案,要求理解嵌入式系统架构,有定的C语言基础,熟悉ARM、protel设计软件,有四层板开发经验。 成为优秀的嵌入式硬件开发工程师需具备以下技能:由需求分析至总体方案、详细设计的规
    发表于 12-05 15:17

    嵌入式Linux运行一定需要MMU吗?为什么需要MMU

    嵌入式Linux运行一定需要MMU吗?为什么需要MMU?  嵌入式Linux运行需要MMU,这是因为MM
    的头像 发表于 10-29 16:28 467次阅读

    请问python能用在嵌入式arm吗?

    python能用在嵌入式arm吗?
    发表于 10-23 06:39

    什么是嵌入式Linux?

    什么是嵌入式Linux? 对于很多电气、电信、通信专业的同学来说,对口专业就业方向主要有软、硬件两个方向。无论是对于学生还是就业而言,软硬件的开发学习,嵌入式物联网在近年来无疑是个摆在面前
    发表于 10-11 13:47

    ARM9嵌入式系统设计基础教程

    ARM9嵌入式系统设计基础教程》电子课件
    发表于 09-25 07:31

    适用于嵌入式FuSa的Arm编译器Arm C和C++库及浮点支持用户指南

    它描述了针对嵌入式FUSA 6功能的各种ARM®编译器的支持级别。 嵌入式FUSA 6的ARM编译器是基于Clang和LLVM技术构建的。 因此,它具有比文档中描述的产品功能集更多的功
    发表于 08-18 07:38

    Arm编译器嵌入式FuSa 6.16.2版LTS用户指南

    ARM Keil MDK的个组件。 或者,您可以将用于Embedded Fusa 6的ARM编译器作为独立产品使用。 用于嵌入式FUSA 6的A
    发表于 08-18 06:42

    嵌入式交叉触发器技术参考手册

    ARM调试系统包含许多片上系统(SoC)外围设备 由ARM指定。示例系统可以由以下块组成: •嵌入式微量宏细胞(ETM) •嵌入式跟踪缓冲区(ETB) •
    发表于 08-02 11:49

    中国首颗ARM+RISC-V异构多核MCU伴随IAR在上海国际嵌入式展亮相

    ARM+RISC-V异构多核MCU硬件平台。“嵌入式多核系统可分为同构多核和异构多核,航顺芯片HK32U3009采用ARM+RISC-V异构多核架构,在国产嵌入式MCU中属于国内首创!
    发表于 06-15 18:32

    嵌入式学习路线你知道吗?

    中对指针的理解和应用。这阶段的主要目的是学习编程语言、开发环境、和培养自己的编程思维,为进步学习嵌入式开发打下良好的基础。 2学习ARM体系结构编程 这
    发表于 06-14 16:00

    PX5的ARM TrustZone支持让嵌入式系统变得更加安全!

    产品安全性。PX5 RTOS对ARM TrustZone的支持让嵌入式开发者能够从物理层降低网络安全风险。 PX5的CEO William Lamie表示:“基于MCU的产品如今已是生活中不可缺少的
    发表于 05-18 13:44

    什么是ARM-Linux嵌入式操作系统移植呢?

    什么是ARM-Linux嵌入式操作系统移植呢?
    发表于 05-16 10:22