侵权投诉

如何成功可靠地实现工业电机驱动中的短路保护

亚德诺半导体 2019-01-30 09:58 次阅读

工业电机驱动的整个市场趋势是对更高效率以及可靠性和稳定性的要求不断提高,功率半导体器件制造商不断在导通损耗和开关时间上寻求突破。有关增加绝缘栅极双极性晶体管(IGBT)导通损耗的一些权衡取舍是:更高的短路电流电平、更小的芯片尺寸,以及更低的热容量和短路耐受时间。这凸显了栅极驱动器电路以及过流检测和保护功能的重要性。

今天我们会讨论现代工业电机驱动中成功可靠地实现短路保护的问题,同时提供三相电机控制应用中隔离式栅极驱动器的实验性示例。

工业环境中的短路

工业电机驱动器的工作环境相对恶劣,可能出现高温、交流线路瞬变、机械过载、接线错误以及其它突发情况。其中有些事件可能会导致较大的过流流入电机驱动器的功率电路中。图1显示了三种典型的短路事件。

图1. 工业电机驱动中的典型短路事件

工业电机驱动中三种典型的短路事件:

逆变器直通。这可能是由于不正确开启其中一条逆变器桥臂的两个IGBT所导致的,而这种情况又可能是因为遭受了电磁干扰或控制器故障。它也可能是因为臂上的其中一个IGBT磨损/故障导致的,而正常的IGBT保持开关动作。

相对相短路。这可能是因为性能下降、温度过高或过压事件导致电机绕组之间发生绝缘击穿所引起的。

相线对地短路。这同样可能是因为性能下降、温度过高或过压事件导致电机绕组和电机外壳之间发生绝缘击穿所引起的。

一般而言,电机可在相对较长的时间内(毫秒到秒,具体取决于电机尺寸和类型)吸收极高的电流;然而,IGBT——工业电机驱动逆变器级的主要部分——短路耐受时间为微秒级。

IGBT短路耐受能力

IGBT短路耐受时间与其跨导或增益以及IGBT芯片热容量有关。更高的增益导致IGBT内的短路电流更高,因此显然增益较低的IGBT具有较低的短路电平。然而,较高增益同样会导致较低的通态导通损耗,因而必须作出权衡取舍。

IGBT技术的发展正在促成增加短路电流电平,但降低短路耐受时间这一趋势。此外,技术的进步导致使用芯片尺寸更小,缩小了模块尺寸,但降低了热容量,以至耐受时间进一步缩短。另外,还与IGBT集电极-发射极电压有很大关系,因而工业驱动趋向更高直流总线电压电平的并行趋势进一步缩减了短路耐受时间。过去,这一时间范围是10 μs,但近年来的趋势是在往5 μs以及某些条件下低至1 μs方向发展。此外,不同器件的短路耐受时间也有较大的不同,因此对于IGBT保护电路而言,通常建议内建多于额定短路耐受时间的额外裕量。

IGBT过流保护

无论出于财产损失还是安全方面的考量,针对过流条件的IGBT保护都是系统可靠性的关键所在。IGBT并非是一种故障安全元件,它们若出现故障则可能导致直流总线电容爆炸,并使整个驱动出现故障。过流保护一般通过电流测量或去饱和检测来实现。

图2显示了这些技巧。对于电流测量而言,逆变器臂和相位输出都需要诸如分流电阻等测量器件,以便应付直通故障和电机绕组故障。控制器和/或栅极驱动器中的快速执行跳变电路必须及时关断 IGBT,防止超出短路耐受时间。这种方法的最大好处是它要求在每个逆变器臂上各配备两个测量器件,并配备一切相关的信号调理和隔离电路。只需在正直流总线线路和负直流总线线路上添加分流电阻即可缓解这种情况。然而,在很多情况下,驱动架构中要么存在臂分流电阻,要么存在相位分流电阻,以便为电流控制环路服务,并提供电机过流保护;它们同样可能用于IGBT过流保护——前提是信号调理的响应时间足够快,可以在要求的短路耐受时间内保护IGBT。

图2. IGBT过流保护技术示例

去饱和检测利用IGBT本身作为电流测量元件。原理图中的二极管确保IGBT集电极-发射极电压在导通期间仅受到检测电路的监控;正常工作时,集电极-发射极电压非常低(典型值为1 V至4 V)。然而,如果发生短路事件,IGBT集电极电流上升到驱动IGBT退出饱和区并进入线性工作区的电平。这导致集电极-发射极电压快速升高。上述正常电压电平可用来表示存在短路,而去饱和跳变阈值电平通常在7 V至9 V区域内。重要的是,去饱和还可表示栅极-发射极电压过低,且IGBT未完全驱动至饱和区。进行去饱和检测部署时需仔细,以防误触发。这尤其可能发生在IGBT尚未完全进入饱和状态时,从IGBT关断状态转换到IGBT导通状态期间。消隐时间通常在开启信号和去饱和检测激活时刻之间,以避免误检。通常还会加入电流源充电电容或RC滤波器,以便在检测机制中产生短暂的时间常数,过滤噪声拾取导致的滤波器杂散跳变。选择这些滤波器元件时,需在噪声抗扰度和IGBT短路耐受时间内作出反应这两者之间进行权衡。

检测到IGBT过流后,进一步的挑战便是关闭处于不正常高电流电平状态的IGBT。正常工作条件下,栅极驱动器设计为能够尽可能快速地关闭IGBT,以便最大程度降低开关损耗。这是通过较低的驱动器阻抗和栅极驱动电阻来实现的。如果针对过流条件施加同样的栅极关断速率,则集电极-发射极的di/dt将会大很多,因为在较短的时间内电流变化较大。由于线焊和PCB走线杂散电感导致的集电极-发射极电路寄生电感可能会使较大的过压电平瞬间到达IGBT(因为VLSTRAY = LSTRAY × di/dt)。因此,在去饱和事件发生期间,关断IGBT时,提供阻抗较高的关断路径很重要,这样可以降低di/dt以及一切具有潜在破坏性的过压电平。

除了系统故障导致的短路,瞬时逆变器直通同样会发生在正常工作条件下。此时,IGBT导通要求IGBT驱动至饱和区域,在该区域中导通损耗最低。这通常意味着导通状态时的栅极-发射极电压大于12 V。IGBT关断要求IGBT驱动至工作截止区域,以便在高端IGBT导通时成功阻隔两端的反向高电压。原则上讲,可以通过使IGBT栅极-发射极电压下降至0 V实现该目标。但是,必须考虑逆变器臂上低端晶体管导通时的副作用。导通时开关节点电压的快速变化导致容性感应电流流过低端IGBT寄生密勒栅极-集电极电容(图3中的CGC)。该电流流过低端栅极驱动器(图3中的ZDRIVER)关断阻抗,在低端IGBT栅极发射极端创造出一个瞬变电压增加,如图所示。如果该电压上升至IGBT阈值电压VTH以上,则会导致低端IGBT的短暂导通,从而形成瞬态逆变器臂直通——因为两个IGBT都短暂导通。这一般不会破坏IGBT,但却能增加功耗,影响可靠性。

图3. 密勒感应逆变器直通

一般而言,有两种方法可以解决逆变器IGBT的感应导通问题——使用双极性电源和/或额外的米勒箝位。在栅极驱动器隔离端接受双极性电源的能力为感应电压瞬变提供了额外的裕量。例如,–7.5 V负电源轨表示需要大于8.5 V的感应电压瞬变才能感应杂散导通。 这足以防止杂散导通。另一种方法是在完成关断转换后的一段时间内降低栅极驱动器电路的关断阻抗。这称为米勒箝位电路。容性电流现在流经较低阻抗的电路,随后降低电压瞬变的幅度。针对导通与关断采用非对称栅极电阻,便可为开关速率控制提供额外的灵活性。所有这些栅极驱动器功能都对整个系统的可靠性与效率有正面影响。

实验示例

实验设置采用三相逆变器,该逆变器由交流市电通过半波整流器供电。虽然系统最高可采用800 V的直流总线电压,但本例中的直流总线电压为320 V。正常工作时,0.5 HP感应电机由开环V/Hz控制驱动。IGBT采用International Rectifier提供的1200 V、30 AIRG7PH46UDPBF。控制器采用ADI的ADSP-CM408F Cortex®-M4F混合信号处理器。使用隔离式Σ-Δ AD7403调制器进行相位电流测量,使用ADuM4135实现隔离式栅极驱动(它是一款磁性隔离式栅极驱动器产品,集成去饱和检测、米勒箝位和其它IGBT保护功能)。在电机相位之间,或在电机相位和负直流总线之间手动开关短路,进行短路测试。 本例中未测试短路至地。

图4. 实验设置

控制器和电源板如图5所示。它们均为ADI公司的ADSP-CM408FEZ-kit®和EV-MCS-ISOINVEP-Z隔离式逆变器平台。

图5. ADI隔离式逆变器平台搭配全功能IGBT栅极驱动器

实验硬件中,通过多种方法实现IGBT过流和短路保护。它们分别是:

直流总线电流检测(逆变器直通故障)

电机相位电流检测(电机绕组故障)

栅极驱动器去饱和检测(所有故障)

对于直流总线电流检测电路,必须加一个小型滤波器,避免误触发,因为直流总线电流由于潜在的高噪声电流而断续。采用具有3 μs时间常数的RC滤波器。检测到过流后,其余有关IGBT关断的延迟是通过运算放大器比较器、信号隔离器、ADSP-CM408F中的跳变响应时间,以及栅极驱动器传播延迟。这会额外增加0.4 μs,使得故障至关断的总时间延迟为3.4 μs——远低于很多IGBT的短路时间常数。

类似的时序同样适用于采用AD7403以及ADSP-CM408F处理器上集成式过载检测sinc滤波器的电机相位电流检测。采用时间常数为3 μs左右的sinc滤波器可良好运作。在这种情况下,其余系统延迟的原因仅会是跳变信号内部路由至PWM单元以及存在栅极驱动器传播延迟,因为过载sinc滤波器是处理器的内部元件。连同电流检测电路或快速数字滤波器的反应时间,无论使用何种方法,两种情况下的ADuM4135超短传播延迟对实现有效的快速过流保护非常重要。

图6显示了硬件跳变信号、PWM输出信号和其中一个逆变器臂的上方IGBT实际栅极-发射极波形之间的延迟。图中可以看到,IGBT开始关断后的总延迟约为100 ns。

图6. 过流关断时序延迟

通道1:栅极-发射极电压10 V/div;

通道2:来自控制器的PWM信号5 V/div;

通道3:低电平有效跳变信号5 V/div;100 ns/div

栅极驱动器去饱和检测比上文描述的过流检测方法执行速度快得多,且对于限制短路电流所允许上升的上限很重要,从而提升了系统的整体稳定性,并超过了可以实现的水准,哪怕系统带有快速过流保护功能。这显示在图7中。当发生故障时,电流快速上升——事实上,电流远高于图中所示,因为图中以带宽限制20 A电流探针进行测量,仅供参考。去饱和电压达到9 V跳变电平,栅极驱动器开始关断。显然,短路的整个持续时间不足400 ns。电流的长尾表示下方IGBT反并联二极管中的续流导致的感应电能。开启时,去饱和电压的初始增加是杂散去饱和检测电动势的一个例子,这是由于集电极-发射极电压瞬态所导致。可以通过增加去饱和滤波器时间常数,从而增加额外的消隐时间而消除。

图7. IGBT短路检测

图8显示了IGBT上的集电极-发射极电压。由于去饱和保护期间,关断的阻抗较大,因此初始受控过冲约为320 VDC总线电压以上80 V。电流在下游反并联二极管中流动,而电路寄生实际上使得电压过冲略高,最高约为420 V。

图8. IGBT短路关断

图9显示了正常工作时,米勒箝位防止逆变器直通的价值。

图9. 开启时的米勒箝位

通道1:栅极-发射极电压5 V/div;

通道2:来自控制器的PWM信号5 V/div;

通道3:集电极-发射极电压100 V/div;200 ns/div

随着IGBT的短路耐受时间下降至1 μs的水平,在极短的时间内检测并关断过流和短路正变得越来越重要。工业电机驱动的可靠性与IGBT保护电路有很大的关系。本文罗列了一些处理这个问题的方法,并提供了实验结果,强调了稳定隔离式栅极驱动器IC(比如单通道栅极驱动器的ADuM4135)的价值。

原文标题:工业电机驱动中,如何成功可靠地实现短路保护

文章出处:【微信号:analog_devices,微信公众号:亚德诺半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

一文汇总变压器外部接地的短路保护措施

中性点直接接地的电力网,自耦变压器和高、中压侧中性点均直接接地的三绕组变压器,装设专用的保护装置,如....
的头像 陈翠 发表于 02-22 20:20 243次 阅读
一文汇总变压器外部接地的短路保护措施

真空洁净机器人

随着世界变得越来越自动化,使用常规立式吸尘器清洁房屋感觉苦不堪言。自2002年首台真空机器人上市以来....
的头像 牵手一起梦 发表于 01-23 17:48 526次 阅读
真空洁净机器人

配电箱如何配置空气开关和漏电保护器

1P+N断路器,虽然同时接入了零火线,但是依旧只能够对火线进行检测,保护效果与1P断路器相同。而2P....
的头像 倩倩 发表于 01-21 14:40 638次 阅读
配电箱如何配置空气开关和漏电保护器

BTN7971B智能车电机驱动的数据手册免费下载

BTN7971B是用于电机驱动应用的集成大电流半桥。它是Novalitic™系列的一部分,包含一个p....
发表于 01-13 08:00 220次 阅读
BTN7971B智能车电机驱动的数据手册免费下载

三相异步电机功率计算公式推导与解析

电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选择时应注意以下两点: ①如果电动机功率选...
发表于 01-11 07:00 747次 阅读
三相异步电机功率计算公式推导与解析

电容隔离——解决交流电机驱动中的关键挑战

信号和电源隔离有助于确保交流电机驱动系统的稳定运行,并保护操作人员免受高压危险。 但并非所有隔离技术都能满足所有需求,尤...
发表于 01-05 07:00 549次 阅读
电容隔离——解决交流电机驱动中的关键挑战

电机驱动器中的集成电流感应的优势分析

许多刷式和步进电机应用必须对电流进行监控和调节。对于刷式电机,电流信息可用来确定负载条件的变化或用来....
的头像 牵手一起梦 发表于 01-03 16:12 1049次 阅读
电机驱动器中的集成电流感应的优势分析

电机驱动芯片LMD18200的原理及应用详细说明

LMD18200是美国国家半导体公司(NS)推出的专用于直流电动机驱动的H桥组件。同一芯片上集成有C....
发表于 12-31 10:44 173次 阅读
电机驱动芯片LMD18200的原理及应用详细说明

直流无刷空心杯电机用啥驱动模块

有大神做过吗,有没有推荐的
发表于 12-30 10:55 516次 阅读
直流无刷空心杯电机用啥驱动模块

ROHM BM6202FS无刷风扇电机驱动器IC

ROHM BM6202FS无刷风扇电机驱动器IC采用PrestoMOS™作为输出晶体管,配有高电压驱动器芯片,采用小型封装。该器...
发表于 12-28 09:47 345次 阅读
ROHM BM6202FS无刷风扇电机驱动器IC

硬件小白求大佬们帮忙解答分析H桥

各位大佬,我是刚入们的硬件小白,在学习H桥驱动时,看到这个电路,有点疑惑,有哪位大神能帮忙分析下原理,具体是如何导通的...
发表于 12-27 18:22 459次 阅读
硬件小白求大佬们帮忙解答分析H桥

MOS电机驱动电路及电机驱动电路的设计

mos电机驱动电路 (一)电机驱动 mos电机驱动电路首先,单片机能够输出直流信号,但是它的驱动才能也是有限的,所以单片机普通...
发表于 12-25 18:24 669次 阅读
MOS电机驱动电路及电机驱动电路的设计

利用电容隔离解决交流电机驱动中的关键挑战

信号和电源隔离有助于确保交流电机驱动系统的稳定运行,并保护操作人员免受高压危险。 但并非所有隔离技术都能满足所有需求,尤其...
发表于 12-25 16:48 469次 阅读
利用电容隔离解决交流电机驱动中的关键挑战

在设计电机驱动电路时,别忽略了这几个PCB建议

在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一...
发表于 12-24 09:56 839次 阅读
在设计电机驱动电路时,别忽略了这几个PCB建议

单相单电容与双电容微型交流异步电机的工作原理及应用

单相电容交流异步电机有单电容与双电容之分,而单电容式又可分电容启动式和电容运行式。它们有何区别。 单相电容交流电机以其体...
发表于 12-11 16:57 589次 阅读
单相单电容与双电容微型交流异步电机的工作原理及应用

【项目分享】基于L298N驱动模块电机设计

本次分享的是使用Arduino与L298N模块来驱动直流电机。 关于L298N 它已经内置的5V供电,所以不必从外面再接5V输...
发表于 12-11 16:28 583次 阅读
【项目分享】基于L298N驱动模块电机设计

从事MCU方案开发,究竟有哪些技术难点?

从事MCU单片机方案的开发多年,包括51核ARM核,各种应用:1.通信基站环境控制箱控制板; 2. ....
的头像 Duke 发表于 12-10 18:07 0次 阅读
从事MCU方案开发,究竟有哪些技术难点?

OM-5手术显微镜的使用手册免费下载

简单的安装加上验证程序,让您轻松自如。它带来了高性能、高可靠性。OM-5型满足要求,通常将所有因素都....
发表于 12-04 08:00 126次 阅读
OM-5手术显微镜的使用手册免费下载

ZLG推出了自带短路保护的微功率模块芯片ZLG1001

ZLG早前产品产品均在当时的技术条件下,为客户提供高可靠性的产品,但随着市场发展,需求的升级,产品不....
的头像 电子发烧友网工程师 发表于 11-26 09:47 798次 阅读
ZLG推出了自带短路保护的微功率模块芯片ZLG1001

AO4292E N沟道MOSFET的数据手册免费下载

本文档的主要内容详细介绍的是AO4292E N沟道MOSFET的数据手册免费下载。
发表于 11-25 08:00 179次 阅读
AO4292E N沟道MOSFET的数据手册免费下载

短路的损害如何通过电路设计进行规避

短路是两个给负载供电的引脚间的无意连接。在交流和直流电路中都会发生,如果是交流的话短路会影响一整个区....
发表于 11-22 13:51 0次 阅读
短路的损害如何通过电路设计进行规避

自带短路保护的微功率模块

ZLG微功率电源模块已历经十几载,产品持续升级,为用户提供品质优越、性价比高的产品,目前基于自主IC....
发表于 11-20 16:49 324次 阅读
自带短路保护的微功率模块

断路器的参数

断路器的规格型号非常多,常见的几种断路器的规格型号有C16、C32、C80、C60、C100、C12....
发表于 11-19 09:22 311次 阅读
断路器的参数

高级电机驱动PDF电子书免费下载

教科书的价值在很大程度上取决于它的结构对读者掌握预定主题的深度和广度的支持程度。这本教科书提供了一个....
发表于 11-18 08:00 184次 阅读
高级电机驱动PDF电子书免费下载

拥有20多年工程实战经验的技术总工,和你谈电机控制!

赵工,20多年工程实战经验,现任哈尔滨汉能光电科技有限公司技术总工,此前在国营特大型工厂工作过,熟悉....
的头像 Duke 发表于 11-15 17:05 0次 阅读
拥有20多年工程实战经验的技术总工,和你谈电机控制!

BTN7971B双路电机驱动的设计经验和电路原理图免费下载

最后是INH引脚,就是这个引脚害我捣鼓了几天,这个引脚看着就像使能引脚,手册上也是这么说的,说的是如....
发表于 11-12 08:00 311次 阅读
BTN7971B双路电机驱动的设计经验和电路原理图免费下载

工业机器人的内部结构

电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。直流伺服电机电刷易磨损,且....
的头像 倩倩 发表于 11-08 10:47 1953次 阅读
工业机器人的内部结构

自制BLDC/PMSM电机驱动板:PCB+元件库+程序+教程

基于FOC5.3库IHM07自制板BLDC/PMSM电机驱动全部资料汇总开源分享
发表于 11-05 15:48 0次 阅读
 自制BLDC/PMSM电机驱动板:PCB+元件库+程序+教程

断路器的脱扣曲线分析

断路器作为电路的短路保护和过载保护重要元器件,充分了解断路器是如何工作的,断路器在什么情况下会跳闸等....
的头像 陈翠 发表于 11-02 11:07 2891次 阅读
断路器的脱扣曲线分析

电动汽车系统中电机驱动的优势与劣势的对比

电动汽车是未来行业内的香馍馍,各大厂家纷纷开发了自家的电动车型,大家在看车的时候,各种各样的电机冒了....
发表于 11-02 09:19 891次 阅读
电动汽车系统中电机驱动的优势与劣势的对比

三种微型电机驱动电路分析

用于3V供电的微型直流电机的驱动,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能....
发表于 10-22 16:05 638次 阅读
三种微型电机驱动电路分析

两种常见的电机驱动

通过电机驱动模块控制驱动电机两端电压来对电机进行制动,我们可以采用飞思卡尔半导体公司的集成桥式驱动芯....
的头像 陈翠 发表于 10-19 09:29 4952次 阅读
两种常见的电机驱动

BLDC高手讨论专区:开发FOC无刷电机遇到的事儿

从事无刷电机驱动设计,无人机电调方案开发,具有多年电机驱动电路及软件开发经验。
的头像 Duke 发表于 10-17 16:12 0次 阅读
BLDC高手讨论专区:开发FOC无刷电机遇到的事儿

机械臂电路设计开源合集,电机工程师们的杰作

机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手臂有....
发表于 10-15 16:25 515次 阅读
机械臂电路设计开源合集,电机工程师们的杰作

7份电机电控PPT合集,工程师必收藏(电机设计/死区补偿/弱磁/可逆等)

本资料为7份精选电机电控PPT合集,适合广大电机工程师作为设计参考资料,以下为部分资料一览 哈工大贵....
发表于 10-15 10:58 573次 阅读
7份电机电控PPT合集,工程师必收藏(电机设计/死区补偿/弱磁/可逆等)

关于MPS电源EMI分析与优化介绍

在靠近副边绕组的动点处增加一层辅助绕组,该绕组一端接原边地,一端悬空,绕组的匝数对等于Y电容的容值,....
的头像 MPS芯源系统 发表于 10-11 10:18 824次 阅读
关于MPS电源EMI分析与优化介绍

关于MP6537 系列电机驱动芯片的性能分析和介绍

一般这类电机属于三相无刷直流电机,由48V的电池供电,功率从几十瓦到几百瓦不等。针对这种类型的电机,....
的头像 MPS芯源系统 发表于 10-11 10:07 902次 阅读
关于MP6537 系列电机驱动芯片的性能分析和介绍

关于电机驱动方案的分析和介绍

有的应用需要的功率不大,但是希望成本最佳,PCB 也要极端小型化,这时候可能就需要将功率元件、门驱动....
的头像 RichtekTechnology 发表于 10-10 09:57 1663次 阅读
关于电机驱动方案的分析和介绍

一种电机驱动的非接触激振装置及其激振方法的详细资料说明

本发明公开了一种电机驱动的非接触激振装置及其激振方法,它包括步进电机,细分驱动器,联轴器,两个支撑轴....
发表于 10-08 08:00 199次 阅读
一种电机驱动的非接触激振装置及其激振方法的详细资料说明

输出短路保护电路图解析

C2 两端电压不能突变,Q2基极电压由VCC开始下降,下降到Q2可以导通(BE结压降取0.7V),这....
发表于 09-30 15:21 691次 阅读
输出短路保护电路图解析

关于无刷电机驱动电动水泵和新能源汽车电机控制器的分析介绍

控制器可根据外部控制指令实现电机的四象限运行控制,并可根据控制需要切换转速、转矩两种闭环控制模式;具....
的头像 英飞凌汽车电子生态圈 发表于 09-24 17:18 1430次 阅读
关于无刷电机驱动电动水泵和新能源汽车电机控制器的分析介绍

电机驱动器电路PCB设计的5条铁律

电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直....
的头像 丫丫119 发表于 09-20 07:32 2495次 阅读
电机驱动器电路PCB设计的5条铁律

如何选取短路保护两种方式

现今随着电子技术的飞速发展以及软件技术的强大,针对电气线路和电器设备的保护功能也是得到了极大的完善和....
的头像 陈翠 发表于 09-13 17:32 836次 阅读
如何选取短路保护两种方式

完整成套的10KW电机驱动电路原理图合集免费下载

本文档的主要内容详细介绍的是完整成套的10KW电机驱动电路图合集免费下载。
发表于 09-12 08:00 303次 阅读
完整成套的10KW电机驱动电路原理图合集免费下载

国外经典电机驱动教程之电机驱动原理PDF电子书免费下载

现代电力驱动系统由电动机、电力变换器和控制器组成,它们集成在一起,对给定的负荷进行机械操作。由于现代....
发表于 09-10 08:00 880次 阅读
国外经典电机驱动教程之电机驱动原理PDF电子书免费下载

电机驱动如何满足真空机器人的发展要求

在本文中,我将回顾真空机器人的主要特点和当前趋势,以及电机驱动如何帮助满足这些要求。
发表于 08-23 08:56 199次 阅读
电机驱动如何满足真空机器人的发展要求

关于CR-V新能源的混动技术分析

以混合动力驱动模式为例,发动机与电机是以串联的方式输出,最终只是靠电机来驱动车辆,并非发动机与电动机....
的头像 汽车与新动力 发表于 08-19 15:23 1098次 阅读
关于CR-V新能源的混动技术分析

性能最高的方法——Σ-Δ转换

Ʃ-&型模数转换器广泛用于需要高信号完整度和电气隔离的电机驱动应用。
的头像 亚德诺半导体 发表于 08-07 18:01 1601次 阅读
性能最高的方法——Σ-Δ转换

用于驱动不同电机电流的各种封装选项

本文主要讨论特定终端应用需要考虑的具体注意事项,我们将从终端应用中用于电机驱动的FET着手展开讨论。
的头像 贸泽电子设计圈 发表于 08-07 15:58 1474次 阅读
用于驱动不同电机电流的各种封装选项

基本电机驱动的程序和工程文件免费下载

本文档的主要内容详细介绍的是基本电机驱动的程序和工程文件免费下载。
发表于 08-07 08:00 232次 阅读
基本电机驱动的程序和工程文件免费下载

电机驱动设计汇总,快来了解一下

24V无刷直流 (BLDC) 电机正弦波驱动,应用于空气净化器风扇
的头像 嵌入式资讯精选 发表于 08-06 15:31 4947次 阅读
电机驱动设计汇总,快来了解一下

电机驱动控制、工作原理知识汇总

电机驱动控制知识汇总,工程师必须收藏!
的头像 PLC技术圈 发表于 07-31 09:22 6985次 阅读
电机驱动控制、工作原理知识汇总

LV8702V PWM电流控制高效步进电机驱动器

V是一款双通道全桥驱动器IC,可驱动步进电机驱动器,该驱动器具有微步驱动功能并支持四分之一步。根据电机负载和半步转速,半步全转矩和四分之一步激励控制电流,从而实现高效驱动。因此,实现了功耗,发热,振动和噪声的降低。 特性 内置1ch PWM电流控制步进电机驱动器(双极型) Ron(高侧Ron:0.3Ω,低侧Ron:0.25Ω,总计:0.55Ω, Ta = 25°C,IO = 2.5A) 微步模式可配置如下:完整步骤/半步全扭矩/半步/四分之一步 激励步骤仅在步进信号输入时向前移动 内置输出短路保护电路(锁存方式) 不需要控制电源 内置-in高效驱动功能(支持半步全扭矩/半步/四分之一步激励模式) 内置ste p-out检测功能(在高速旋转期间跳出检测可能不准确) IO max = 2.5A 内置热关闭电路 BiCDMOS流程IC 应用 终端产品 步进器 计算机和外围设备 工业 打印机 扫描仪 监控摄像机(CCTV) 纺织机器 电路图、引脚图和封装图...
发表于 07-30 20:02 38次 阅读
LV8702V PWM电流控制高效步进电机驱动器

LV8729V 步进电机驱动器 PWM 恒流控制 9 - 32 V.

V是一款PWM电流控制微步双极步进电机驱动器。该驱动程序可以从Full步骤执行八步微步分辨率1/128步,并且可以通过CLK输入进行简单驱动。 特性 优势 输出导通电阻(上限:0.35Ω;下侧:0.3Ω;上下总数:0.65; Ta = 25°C,IO = 1.8A) 低消耗 2相,1-2相,W1-2相,2W1-2相,4W1-2相,8W1-2相,16W1-2相,32W1-2相激励是可选择的。 可提供各种步进调节,低振动,无声驱动 过电流保护电路。 目前的保护 热关断电路。 热保护 单通道PWM电流控制步进电机驱动器。 BiCDMOS过程IC。 使用唯一的步进信号输入推进激励步骤。 可用正向反向控制。 输入下拉阻力 使用复位引脚和启用引脚 应用 终端产品 步进电机 计算机和外围设备 工业 安全相机 平板扫描仪 喷墨打印机 多功能打印机 文档扫描仪 PoE安全摄像机 电路图、引脚图和封装图...
发表于 07-30 20:02 40次 阅读
LV8729V 步进电机驱动器 PWM 恒流控制 9  -  32 V.

LV8731V 步进电机驱动器 PWM 恒流控制

V是一款双通道H桥驱动器IC,可以切换步进电机驱动器,它具有微步驱动功能,支持4W 1-2相激励,以及两个通道的有刷电机驱动器,支持电机的正向,反向,制动和待机。它非常适用于驱动有刷直流电机和步进电机,用于办公设备和娱乐应用。 特性 优势 导通电阻低(上侧:0.3Ω;下侧:0.25Ω;上部总电阻)和更低:0.55Ω; Ta = 25°C,IO = 2A) 高效率 激励模式可设置为2阶段,1-2阶段,W1-2阶段或4W1-2阶段 各种步调可用 可分四步选择电机电流 低耗 输入短路保护电路(可选择锁存型或自动复位型) 安全设计 无需控制电源 简易设计 CLK-IN输入 轻微控制微步驱动 单通道PWM电流控制步进电机驱动器(可选配直流电机驱动器)通道2)合并。 BiCDMOS工艺IC 激励步骤仅通过步进信号输入进行 异常情况警告输出引脚 应用 终端产品 步进/有刷直流电机 计算和外围设备 工业 打印机 平板扫描仪 喷墨打印机 多功能打印机 文档扫描仪 PoE安全相机 老虎机 自动售货机 取款机 电路图、引脚图和封装图...
发表于 07-30 20:02 66次 阅读
LV8731V 步进电机驱动器 PWM 恒流控制

LV8402GP 电机驱动器 正向/反向 2通道

GP是一款双通道正向/反向电机驱动器,采用D-MOS FET作为输出级。使用MOS电路时,它支持PWM输入。其特点是导通电阻(典型值为0.75欧姆)和电流耗散较低。它还提供保护功能,如热保护电路和降低电压检测,最适合需要高电流的电机。 特性 优势 低导通电阻0.75Ω。 发热量低,消耗低 内置低压复位和热关断电路。 降低电压检测,热量保护 2ch正向/反向电机驱动器。 内置低压复位和热关断电路。 低功耗。 3模式功能正向/反向,制动。 内置电荷泵。 当电机通过两相励磁驱动时,内置的EXTRA模式可以减少PWM端口。 应用 终端产品 步进/有刷直流电机 便携式和无线 相机 数码相机 电路图、引脚图和封装图...
发表于 07-30 20:02 77次 阅读
LV8402GP 电机驱动器 正向/反向 2通道

LV8732V 步进电机驱动器 PWM 恒流控制

V是一款双通道H桥驱动器IC,可以切换步进电机驱动器,它具有微步驱动功能,支持2W 1-2相激励,以及两个通道的有刷电机驱动器,支持电机的正向,反向,制动和待机。它非常适用于驱动有刷直流电机和步进电机,用于办公设备和娱乐应用。 特性 优势 导通电阻低(上侧:0.3Ω;下侧:0.25Ω;上部总电阻)和更低:0.55Ω; Ta = 25°C,IO = 2A) 高效率 激励模式可设置为2阶段,1-2阶段,W1-2阶段或2W1-2阶段 各种步调可用 可分四步选择电机电流 低耗 输入短路保护电路(可选择锁存型或自动复位型) 安全设计 无需控制电源 简易设计 CLK-IN输入 轻微控制微步驱动 单通道PWM电流控制步进电机驱动器(可选配直流电机驱动器)通道2)合并。 BiCDMOS工艺IC 激励步骤仅通过步进信号输入进行 异常情况警告输出引脚 应用 终端产品 步进/有刷直流电机 计算和外围设备 工业 打印机 平板扫描仪 喷墨打印机 多功能打印机 文档扫描仪 PoE安全相机 老虎机 自动售货机 取款机 电路图、引脚图和封装图...
发表于 07-30 20:02 103次 阅读
LV8732V 步进电机驱动器 PWM 恒流控制

LV8548MC 电机驱动器 正向/反向 低饱和电压 12 V

MC是一款双通道低饱和电压正向/反向电机驱动器IC。它是12V系统产品中电机驱动的最佳选择,可以驱动两个直流电机,一个并联直流电机,也可以全步和半步驱动步进电机。 特性 优势 DMOS输出晶体管采用(上下总RON =1Ω典型值) 高效率 待机模式下的当前消耗量 低功耗 4V至16V工作电源电压范围(控制系统电源是不必要的。) 简易设计 VCC max = 20V,IO max = 1A 安全设计 采用紧凑型封装(SOIC10)。 董事会面积减少 可以并联连接。(并联,驱动通道连接) 高电流通信 引脚与LB1948MC兼容 内置制动功能 应用 终端产品 消费者 工业 计算和外围设备 冰箱 平板扫描仪 文档扫描仪 PoE销售点终端 干衣机 吸尘器 时间记录器 POS打印机 标签打印机 玩具 电路图、引脚图和封装图...
发表于 07-30 20:02 103次 阅读
LV8548MC 电机驱动器 正向/反向 低饱和电压 12 V

LV8549MC 步进电机驱动器 低饱和电压 12 V

MC是一款双通道低饱和电压正向/反向电机驱动器IC。它是12V系统产品中全步进电机驱动的最佳选择。 特性 优势 采用DMOS输出晶体管(上下总RON =1Ω典型值) 高效率 对于一个电源 不需要控制系统电源。 待机时的当前消耗量 低消耗量 采用紧凑型软件包(SOIC10)。 VCC max = 20v,IO max = 1A 应用 终端产品 计算与计算外围设备 工业 消费者 平板扫描仪 文件扫描仪 PoE销售点终端 干衣机 冰箱 吸尘器 时间记录器 POS打印机 标签打印机 玩具 电路图、引脚图和封装图...
发表于 07-30 20:02 54次 阅读
LV8549MC 步进电机驱动器 低饱和电压 12 V

LV8734V 步进电机驱动器 PWM 恒流控制

V是一款双通道H桥驱动器IC,可以切换步进电机驱动器,它具有微步驱动功能,支持2W 1-2相激励,以及两个通道的有刷电机驱动器,支持电机的正向,反向,制动和待机。它非常适用于驱动有刷直流电机和步进电机,用于办公设备和娱乐应用。 特性 优势 低导通电阻(上侧:0.48Ω;下侧:0.32Ω;上部总数)和更低:0.8Ω,Ta = 25°C,I O = 1.5A) 高效率 输出短路保护电路(可从锁存类型或自动复位类型中选择)纳入 短暂保护 激励:全,半,四分之一,1/8步 各种可调节步骤 电机电流可分4步进行 低消耗 OCP:Latch / Auto重置 安全设计 CLK-IN输入 轻微控制微步驱动 该设备是单通道PWM电流控制步进电机驱动器(可通过直流电机驱动器通道2选择) 激励模式可以设置为2阶段,1 -2阶段,W1-2阶段或4W1-2阶段 异常情况警告输出引脚 无需控制电源 应用 终端产品 步进/有刷直流电机 计算和外围设备 工业 打印机 平板扫描仪 喷墨打印机 多功能打印机 文档扫描仪 PoE安全相机 老虎机 自动售货机 取款机 电路图、引脚图和封...
发表于 07-30 20:02 81次 阅读
LV8734V 步进电机驱动器 PWM 恒流控制

LV8411GR 4通道步进电机驱动器

GR是H桥电机驱动器IC,可以控制4种前进,后退,制动和待机模式。该IC采用微型封装,适用于DSC或手机相机模块的步进电机驱动系统。 特性 优势 内置热保护电路 热保护 内置低压故障预防电路 低压保护 包括用于驱动光电传感器的晶体管 更少的外部组件 输出ON电阻:1.2ohm (总计上限和下限),效率高 内置光电传感器驱动晶体管 少外部元件 VCT封装(3 x 3mm) 小型设计足迹 饱和度驱动器H桥:4个通道 应用 终端产品 步进电机 工业 便携式和无线 相机 PoE安全摄像头 数码相机 电路图、引脚图和封装图...
发表于 07-30 19:02 14次 阅读
LV8411GR 4通道步进电机驱动器

AMIS-30622 带I的步进电机驱动器和控制器

0622是步进电机驱动器系列的成员,其位置控制器和控制/诊断接口集成在一个芯片中。该系列产品包括两种产品:带有LIN接口的AMIS-30621,可以构建与LIN主站远程连接的专用机电一体化解决方案。 AMIS-30622具有SERIAL接口,可作为微控制器旁边的外围设备。芯片通过接口接收高级定位指令,然后驱动电机线圈直到达到所需位置。片上位置控制器可配置(OTP和接口),适用于不同的电机类型,定位范围和速度,加速和减速参数。 AMIS-30622充当总线上的从机,主机可以从每个单独的从节点获取特定的状态信息,如实际位置,错误标志等。 特性 微步((1 / 2,1 / 4,1 / 8,1 / 16) 低共振&安培;噪音 高分辨率 可编程峰值电流高达800mA 20kHz PWM电流控制 自动选择快速&慢衰减模式 内部反激式FET 完全集成的电流检测 8V-29V电源电压 符合汽车标准 完整的诊断和状态信息 电路图、引脚图和封装图...
发表于 07-30 19:02 21次 阅读
AMIS-30622 带I的步进电机驱动器和控制器

AMIS-30621 带LIN总线的微步电动机驱动器和控制器

0621是一款带有位置控制器和控制诊断接口的单片微步进电机驱动器。它可以构建与LIN主机远程连接的专用机电一体化解决方案。芯片通过总线接收定位指令,然后将电机线圈驱动到所需位置。片上位置控制器可配置(OTP或RAM)不同的电机类型,定位范围和速度,加速度和减速度参数。 AMIS-30621充当LIN总线上的从机,主机可以从每个单独的从节点获取特定的状态信息,如实际位置,错误标志等。该芯片采用I2T100技术实现,可同时实现高压同一芯片上的模拟电路和数字功能。 AMIS-30621完全兼容汽车电压要求。 特性 自动选择快速和慢速衰减模式。 无需外部反激二极管。 可配置的速度和加速度。 现场可编程节点地址。 动态分配标识符。 物理层和数据链路层(符合LIN rev.1.3)。 LIN总线短路保护供应和地面。 高温警告和管理。 失去LIN安全操作。 Micro - 步进技术。 峰值电流高达800 mA。 固定频率PWM电流控制。 快速自动选择慢速衰减模式。 无需外部反激二极管。 符合14 V汽车系统。 这是一个无铅设备。 应用 汽车应用,...
发表于 07-30 19:02 60次 阅读
AMIS-30621 带LIN总线的微步电动机驱动器和控制器

AMIS-30422 用于外部FET的步进电机驱动器/控制器

0422是一款微步进步进电机桥控制器,适用于大电流范围双极应用。芯片通过SPI接口与外部控制器连接,以控制两个外部功率NMOS H桥。它具有片上稳压器,电流检测,自适应PWM控制器和具有智能斜率控制开关的预驱动器,使该器件符合EMC标准,适用于工业和汽车应用。它使用专有的PWM算法进行可靠的电流控制。 特性 两相步进电机的双H桥预驱动器 通过SPI编程可编程电流 片上电流转换器 SPI接口 速度和负载角度输出 9步模式从完整步长到128微步 通过两个外部检测电阻的电流检测 自动选择快速和慢速衰减的PWM电流控制 具有可选电压斜率的低EMC PWM 全输出保护和诊断 热警告和关机 与3.3 V微控制器兼容 集成3.3 V稳压器为外部微控制器供电 用于复位外部微控制器的集成复位功能 综合监察功能 应用 终端产品 电机控制 HVAC 工业控制系统 电路图、引脚图和封装图...
发表于 07-30 19:02 57次 阅读
AMIS-30422 用于外部FET的步进电机驱动器/控制器

AMIS-30543 微步电机驱动器

543是一款用于双极步进电机的微步进步进电机驱动器。芯片通过IO引脚和SPI接口与外部微控制器连接。它具有片上稳压器,复位输出和看门狗复位功能,可为外围设备供电。 AMIS30543包含一个电流转换表,根据NXT输入引脚上的时钟信号以及DIR(方向)寄存器或输入引脚的状态,进行下一个微步。芯片提供速度和负载角度输出。这允许基于负载角度创建失速检测算法和控制回路以调节扭矩和速度。它使用专有的PWM算法进行可靠的电流控制。 AMIS30543采用I2T100技术实现,可在同一芯片上实现高压模拟电路和数字功能。该芯片完全兼容汽车电压要求。 特性 优势 可编程峰值电流高达3A 高度集成和降低系统成本 128微步 更高的系统分辨率和更安静的电机操作 速度和负载角度输出 启用真正的无传感器闭环控制电机 可编程PWM电压斜率 优化的EMC配置文件 有源反激式二极管 降低BOM成本和提高可靠性 集成电源和监视器支持rt用于外部MCU 降低总系统复杂性和BOM成本 应用 终端产品 数控设备 工业制造设备 纺织设备 电路图、引脚图和封装图...
发表于 07-30 19:02 84次 阅读
AMIS-30543 微步电机驱动器

AMIS-30532 微步进电机驱动器

0532是一款用于双极步进电机的微步进步进电机驱动器。芯片通过I / O引脚和SPI接口与外部微控制器连接。它具有片上稳压器,复位输出和看门狗复位功能,能够为外围设备供电。 AMIS-30532包含一个电流转换表,根据NXT输入引脚上的时钟信号和DIR(=方向)寄存器或输入引脚的状态,进行下一个微步。该芯片提供所谓的速度和负载角输出。这允许基于负载角度创建失速检测算法和控制回路以调节扭矩和速度。它使用专有的PWM算法进行可靠的电流控制。 AMIS-30532采用I2T100技术,可在同一芯片上实现高压模拟电路和数字功能。该芯片完全兼容汽车电压要求。 AMIS-30532非常适用于汽车,工业,医疗和海洋环境中的通用步进电机应用。通过片上稳压器,它进一步降低了机电一体化步进应用的BOM。 特性 用于两相步进电机的双H桥 使用5位电流DAC,可编程峰值电流高达1.6 A连续(3.0 A短时间) 片上电流转换器 SPI接口 速度和负载角度输出 从全步到32步的七步模式 完全集成的电流检测 PWM电流控制,自动选择快速和慢速衰减 具有可选电压斜率的低EMC PWM 有源反激二极...
发表于 07-30 13:02 72次 阅读
AMIS-30532 微步进电机驱动器

AMIS-30522 具有全面诊断反馈和SLA输出的步进电机驱动器

0522是一款用于双极步进电机的微步进步进电机驱动器。芯片通过I / O引脚和SPI接口与外部微控制器连接。它具有片上稳压器,复位输出和看门狗复位功能,能够为外围设备供电。 AMIS-30522包含一个电流转换表,根据NXT输入引脚上的时钟信号和DIR(方向)寄存器或输入引脚的状态,进行下一个微步。芯片提供速度和负载角度输出。这允许基于负载角度创建失速检测算法和控制回路以调节扭矩和速度。它使用专有的PWM算法实现可靠的电流控制。 AMIS-30522采用I2T100技术,可在同一芯片上实现高压模拟电路和数字功能。该芯片完全兼容汽车电压要求。 AMIS-30522非常适用于汽车,工业,医疗和海洋环境中的通用步进电机应用。通过片上稳压器,它进一步降低了机电一体化步进应用的BOM。 特性 优势 集成5V稳压器 供应外部微控制器 集成复位功能 重置外部微控制器 片上电流转换器 SPI接口 速度和负载角度输出 七步模式,从全步到32微-steps 完全集成的电流检测 自动PWM控制c选择快速和慢速衰减 低具有可选电压斜率的EMC PWM 主动飞行-back二极...
发表于 07-30 13:02 65次 阅读
AMIS-30522 具有全面诊断反馈和SLA输出的步进电机驱动器

NCV70517 微步进电机驱动器

17是一款用于双极步进电机的微步进步进电机驱动器。芯片通过I / O引脚和SPI接口与外部微控制器连接。 NCV70517包含一个电流转换表,根据“NXT”输入引脚上的时钟信号和“DIR”(=方向)寄存器或输入引脚的状态,进行下一个微步。如果检测到电气错误,欠压或升高的结温,芯片会提供错误消息。它采用专有的PWM算法实现可靠的电流控制.NCV70517完全兼容汽车电压要求,非常适用于汽车,工业,医疗和海洋环境中的通用步进电机应用。由于该技术,设备特别适用于电池供电波动的应用。 特性 用于两相步进电机的双H桥 可编程峰值电流高达800 mA 低温升压电流高达1100 mA 片上电流转换器 SPI接口 5步骤模式,从全步骤到16个微步骤 完全集成的电流检测和电流-regu lation 反电动势测量 片上失速检测 自动选择PWM电流控制Fast和SlowDecay 固定PWM频率 有源反激二极管 全输出保护和诊断 热警告和关机 兼容3.3 V微控制器,5 V容差输入,5个VTolerant漏极开路输出 重置功能 过流保护 这些器件无铅,无卤素/ BFR,符...
发表于 07-30 12:02 58次 阅读
NCV70517 微步进电机驱动器

AMIS-30624 带有I2C总线和失速检测的微步进电机驱动器和控制器

0624是一款单芯片微步进电机驱动器,带有位置控制器和控制/诊断接口。它已准备好构建智能外围设备系统,其中最多可将32个驱动程序连接到一个I 2 C主站。这大大降低了系统复杂性。设备通过总线接收定位指令,然后驱动定子线圈,使两相步进电机移动到所需位置。片上位置控制器可配置(OTP或RAM),用于不同的电机类型,定位范围和速度,加速度和减速度参数。微步进允许静音电机操作和增加定位分辨率。先进的运动鉴定模式可根据所选运动参数验证整个机械系统。 AMIS-30624可以轻松连接到I 2 C总线,其中I 2 C主站可以从每个主机获取特定的状态信息,如实际位置,错误标志等。单个从动节点。集成的无传感器失速检测功能可在电机失速时停止。这样可以在参考运行期间实现静音但精确的位置校准,并在接近机械终点时实现半闭环操作。该器件采用I2T100技术实现,同时支持高压模拟电路和数字功能芯片。 AMIS-30624完全兼容汽车电压要求。 特性 无传感器失速检测 峰值电流高达800mA 固定频率PWM电流 - 控制 位置控制器 可配置的速度和加速度 用于inter的双向2线总线-IC control 现场可编程节点...
发表于 07-30 12:02 64次 阅读
AMIS-30624 带有I2C总线和失速检测的微步进电机驱动器和控制器

NCV7750 4通道低侧继电器驱动器

0是一款汽车八通道低侧驱动器,每通道可提供高达600 mA的驱动能力。输出控制通过SPI端口提供,可方便地报告开路负载(或对地短路),过载和过温条件下的故障。此外,可通过INx引脚寻址输出的并行控制。专用的跛行回家模式引脚(LHI)使能OUT1至OUT4。每个输出驱动器都受到过载电流保护,并包含一个用于感性负载的输出钳位。 NCV7750采用SSOP24熔断引线封装。 特性 优势 没有开路检测的电源 允许在没有LED负载照明的情况下上电。 低静态电流 符合严格的汽车模块静态电流要求。 16位SPI控制 能够报告错误并且能够菊花链连接。 Limp Home功能 汽车系统功能允许车辆使用有缺陷的微处理器维持运行。 3.3V和5V兼容的数字输入电源范围 适用于3.3V和5V微处理器接口。 开路负载,过载和故障报告温度过高 微压器并报告异常活动以进行故障排除和系统完整性。 加电复位 保持系统通电和断电顺畅。 一侧所有输出的统一输出结构包。 简化印刷电路板布局。 AEC-Q100合格 汽车要求维护现场和变更控制。 4频道 600 ...
发表于 07-30 12:02 40次 阅读
NCV7750 4通道低侧继电器驱动器

AMIS-30521 具有全面诊断反馈和SLA输出的步进电机驱动器

21是一款用于双极步进电机的微步进步进电机驱动器。芯片通过I / O引脚和SPI接口与外部微控制器连接。 NCV70521包含一个电流转换表,根据NXT输入引脚上的时钟信号和DIR(方向)寄存器或输入引脚的状态,进行下一个微步。该芯片提供所谓的速度和负载角输出。这允许基于负载角度创建失速检测算法和控制回路以调节扭矩和速度。它使用专有的PWM算法实现可靠的电流控制。 NCV70521采用I2T100技术实现,可在同一芯片上实现高压模拟电路和数字功能。该芯片完全兼容汽车电压要求。 NCV70521非常适用于汽车环境中的通用步进电机应用。 特性 使用5位电流DAC可编程峰值电流高达1.5 A On-芯片电流转换器 SPI接口 速度和负载角输出 完整的7步模式-step最多32个微步 完全集成的电流检测 自动选择快速和慢速衰减的PWM电流控制 具有可选电压斜率的低EMC PWM 有源反激二极管 完整输出保护和诊断 热警告和关闭 与5V和3.3V微控制器兼容 终端产品 汽车前照灯位置 襟翼/阀门控制发动机管理 折叠显示器 HVAC和LPG膨胀阀 电路图、引脚图和...
发表于 07-30 11:02 100次 阅读
AMIS-30521 具有全面诊断反馈和SLA输出的步进电机驱动器

AMIS-30512 微步电机驱动器

0512是一款用于双极步进电机的微步进步进电机驱动器。芯片通过I / O引脚和SPI接口与外部微控制器连接。它具有片上稳压器,复位输出和看门狗复位功能,能够为外围设备供电。 AMIS-30512包含一个电流转换表,根据NXT输入引脚上的时钟信号和DIR(方向)寄存器或输入引脚的状态,进行下一个微步。该芯片提供所谓的速度和负载角输出。这允许基于负载角度创建失速检测算法和控制回路以调节扭矩和速度。它采用专有的PWM算法实现可靠的电流控制。 AMIS-30512采用I2T100技术,可在同一芯片上实现高压模拟电路和数字功能。该芯片完全兼容汽车电压要求。 AMIS-30512非常适用于汽车,工业,医疗和海洋环境中的通用步进电机应用。 特性 用于两相步进电机的双H桥 可编程峰值电流上升使用5位电流DAC达到800 mA 片上电流转换器 SPI接口 速度和负载角度输出 从全步到32步的七步模式 完全集成的电流检测 自动选择快速和慢速衰减的PWM电流控制 低EMC PWM可选择的电压斜率 有源反激二极管 完整输出保护和诊断 热警告和关机 兼容3.3 V微控制器,5.0 V...
发表于 07-30 11:02 75次 阅读
AMIS-30512 微步电机驱动器

议程新鲜出炉:第13届(深圳)电机驱动与控制技术研讨会即将举办

在中国智造2025逐步发展的今天,设备更新换代需求也在日益增大,电机在制造业里已经具备了无可替代的作....
发表于 07-26 21:20 236次 阅读
议程新鲜出炉:第13届(深圳)电机驱动与控制技术研讨会即将举办

实时控制器获得新的连接功能

在不断变化的市场中,设计差异化固然重要,但效率和性能对于产品的生命周期以及企业最终的长期可持续发展却....
发表于 07-24 14:02 269次 阅读
实时控制器获得新的连接功能

你抽的是烟还是炸弹?电子烟短路保护设计解析

在电子烟的使用过程中,却无法完全避免短路的发生。譬如:遇到劣质的烟弹、使用过程中的擦碰、不小心用金属....
的头像 人间烟火123 发表于 07-10 11:32 2635次 阅读
你抽的是烟还是炸弹?电子烟短路保护设计解析

响应速度100倍提升,电子烟短路保护可靠性再上新台阶

电子烟虽然体积小巧,却是安全要求极高的大功率产品。以市面上常见的可更换烟弹的扁烟为例,虽然相对于AP....
的头像 人间烟火123 发表于 07-10 11:26 1712次 阅读
响应速度100倍提升,电子烟短路保护可靠性再上新台阶

一个经典输出短路保护电路图文详细介绍

上电:C2 两端电压不能突变,Q2基极电压由VCC开始下降,下降到Q2可以导通(BE结压降取0.7V....
发表于 07-05 08:00 365次 阅读
一个经典输出短路保护电路图文详细介绍

英飞凌亮相PCIM Asia 2019,以最新产品技术助力多领域实现节能增效

英飞凌以“我们赋能世界”为主题,在展会上展示了具备更高功率密度、最新芯片技术和功能更集成的一系列新产....
发表于 07-03 18:47 301次 阅读
英飞凌亮相PCIM Asia 2019,以最新产品技术助力多领域实现节能增效

几款高性价比电机驱动芯片

直流电机驱动多种多样,但是驱动原理却是恒定不变的。电机速度的调控总的来说有三种:弱磁升速,调压调速和....
发表于 06-25 17:00 7387次 阅读
几款高性价比电机驱动芯片

电机控制系统的故障诊断与容错策略

电机驱动系统故障可分为硬性故障和软性故障,前者主要集中在电机本体上,如定子绕组短路、断路、绝缘老化、....
发表于 06-25 11:48 233次 阅读
电机控制系统的故障诊断与容错策略