0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度探析V2X与ITS的发展史

佐思汽车研究 来源:cc 2019-01-24 15:04 次阅读

V2X可以简单分为两大类,一类是以智能交通(ITS)为核心的,发起者自然是政府机构。另一类是以智能驾驶为核心的,发起者主要是汽车厂家和电信运营商。另一种分法就是按通讯方式,一类是DSRC,一类是C-V2X。DSRC主要是针对智能交通应用的,欧美日都选择以DSRC的智能交通技术路线,某种意义上讲DSRC与C-V2X并非水火不容,C-V2X更侧重智能驾驶。

早在1994年,美国高速公路管理局推出先进高速系统AHS研究课题,1997年成立智能汽车计划小组研究智能交通,2005年完成研究任务,提出了完整的ITS体系。同时在1999年,FCC就为ITS划分了一个5850MHz-5925MHz频带,决定用当时最先进的基于802.11a的技术。并分成七个独立的频道,分别为频道172、174、176、178、180、182、184;各频道均为10MHz。频道178为控制频道(Control Channel,CCH),负责WAVE服务广播讯框(WAVE Service Advertisement,WSA)封包;其他频道则为服务频道(Service Channel,SCH),只能传递WAVE短信息(WAVE Short Message,WSM)封包。

同时在2003年,全球八大车厂丰田、日产、福特、通用、戴姆勒、克莱斯勒、大众、宝马成立VSCC车辆安全通讯联盟开展DSRC车端的研究,2005年通用演示了第一个V2V系统。之后经过8年的完善,2013年DSRC形成了完备的体系。

2014年2月,欧洲标准组织ETSI与CEN宣布完成第一阶段基于DSRC的ITS标准,底层为IEEE 802.11P,上层为IEEE1609,同时还有SAE J2375和J2945两个标准定义通讯格式。

2014年8月,美国交通部试图强制立法推广DSRC为核心的ITS,但直到今天也没用完成强制立法。

DSRC的IEEE 1609标准架构

DSRC架构标准

欧洲方面,ITS系统源自1973年英国运输与道路研究所(TRRL)的SCOOT(Split, Cycle and Offset Optimization Technique),更早SCOOT模型基础原自TRANSYT (TrafficNetwork Study Tool),采用了同样的周期流分布图(CFP)的建模方式和相近的目标函数。不过有了显著的改进,TRANSYT的CFP是以历史的平均交通流计算的;而SCOOT是联机模型,CFP是实时测量的。

SCOOT的核心就是如何控制交通信号灯,中国的北京、青岛、成都、重庆、大连就采用西门子的SCOOT系统。 当时的技术无法利用传感器高效计算实时交通流量,因此意义不大。但这是ITS的基础方法论,SCOOT后来被德国西门子全盘继承,并衍生出SPAT(Signal Phase and Timing)。 SCOOT是跨整个路网进行交通号志变换时机的最佳化,仅倚赖工程师预先以固定且有限数量的可行程序进行配置,无法弹性对应即时路况与个别交叉路口的流量变化。

西门子在2018年推出Follow AI也就是下一代SCOOT,它首先会建立复杂的一般性规则,接着可针对每个特定的交叉路口进行个性化的适地性处理,Flow AI根据内建的回环(loop)侦测即时的交通流,并运用云端AI即时产生近乎无限数量的交通号志变换时机选项。

欧洲ITS标准主要分5个工作组 (WG).

WG1 (Application Requirements and Services):ITS中基础应用需求与服务,并制定Applications与Facilities两层之通讯协议。

WG2 (Architecture and Cross Layer):发展适合所有ITS之通讯架构与跨层管理协议,并扮演欧洲ITS通讯架构之协调者角色。

WG3 (Transport and Network): 规范Networking和Transport两层之协议,并利用车载网络特有之地理位置信息特性,发展制定GeoNetworking及IPv6相关协议。

WG4 (Media and Medium Related): 规范MAC和PHY两层相关之标准,其将欧洲ITS使用之频谱划分为ITS-G5A、ITS-G5B与ITS-G5C三个部分,并兼顾其中之兼容性。

WG5 (Security):制定ITS相关之安全性议题,此草案为车载安全通讯标准制定之基准,规范车载环境中威胁、弱点与风险分析,该草案已于2017年3月正式出版。

目前ETSI正着手制定第二版标准,主要涵盖更多使用案例(Use Cases),包括自动跟车(Platooning)、协同式可适应性巡航控制(Cooperative Adaptive Cruise Control, C-ACC),以及弱势道路使用者(Vulnerable Road Users, VRU)等。

欧洲ITS标准框架

欧洲ITS的OSI模型

信道技术层( Access layer):本层提供物理层与介质访问控制层服务,对应 OSI通信协议模型的物理层和数据链路层。

网络传输层( Networking &Transport layer):本层提供数据路由与传输服务,对应 OSI 通信协议模型的网络层和传输层。

服务设施层( Facilities layer): 本层为多个应用提供高层数据传输协议与信息管理服务,对应 OSI 通信协议模型的会话层、表示层和应用层。

除此之外, ITS-S 还分为以下功能层:

应用层( Application layer): 应用层模块表示 ITS-S 应用程序利用 ITS-S 的服务来连接一个或多个其他 ITS-S 应用程序。两个或多个互补的 ITS-S 应用程序组成了一个向 ITS 用户提供服务的应用。

管理层( Management layer):负责管理 ITS-S 的通信以及站内数据交换服务。

安全( Security Entity):为 OSI 通信协议栈各层提供安全服务。

CAM与DENM是智能交通系统中最重要的两种信息协议栈标准。

Decentralized Environmental Notification Message,分散环境通知信息,主要用于道路危险预警应用,是事件触发型信息,一旦通过车载设备检测到了安全隐患事件(例如前方车辆紧急刹车、道路施工警告等),车载ITS的相关应用就立即发射DENM信息。接收车辆可对比车辆自身位置与行车路线,判断事件对自车的关联性并预测可能的碰撞风险,以及提前通知驾驶员采取有效的措施。根据事件地点和类型,可能要求接收到DENM信息的车辆向外转发。

CAM(Cooperative Awareness Message),合作感知信息,这是时间触发信息,提供车辆的速度、位置、方向灯以及交通信号系统如交通信号灯的状态,天气提醒等信息。

ETSI 在 2013 年发布了道路危险警告( RHW) 应用 , ITS-S 通过 RHW 应用检测到道路危险情况并触发生成相应的 DENM 消息,之后 ITS-S 会将这一 DENM 消息发送出去,通知一定区域范围内的其他车辆。

1、 原始 ITS-S 检测到事件后要生成描述该事件用例的 DENM 并将其发送给该用例对应的目的区域内的其他 ITS-S。

2、 DENM 传输的开始和终止由应用层的 ITS-S 应用程序控制。

3、 只要事件存在, DENM 就会持续发送。

4、处在目的区域内的 ITS-S 需要将接收到的 DENM 转发给其它 ITS-S。

5、 DENM 传输过程的终止, ITS-S 判断 DENM 的有效期字段, 在到达 DENM 有效期时 ITS-S 停止发送该消息, 或者在未到达有效期时但已经检测到危险事件已经解除则可以由 ITS-S 应用程序请求生成一个通知事件已经终止的 DENM。

6、 若收到 DENM 的 ITS-S 根据消息内容判断事件与自身有关,则做出适当的警告给使用者。

这个CAM应用类似于长沙智能驾驶研究院发布的“V2X+交叉路口”解决方案,能够车载传感器所不能覆盖的范围,也就是NLOS。

不同的是欧洲早在2011年就已经做了完整的技术规范。路侧传感器可以是摄像头、毫米波雷达或激光雷达。激光雷达最合适,因为能见度差的情况下反而是最易发生交通事故的时候。1550纳米波长的激光雷达几乎可以像毫米波雷达那样全天候工作,同时激光雷达的分辨率较高。

欧洲ITS整体框架

这其中承载整个系统的关键是LDM,即Local Dynamic Map。

典型LDM的4层结构,最上层基本就是V2X信息。欧洲ETSI在2014年对LDM做了详细标准,也就是ETSI EN302895 V1.1.1,车辆通讯基础应用设置之LDM。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 智能交通
    +关注

    关注

    12

    文章

    765

    浏览量

    43153
  • V2X
    V2X
    +关注

    关注

    25

    文章

    202

    浏览量

    43024

原文标题:V2X与ITS的前世今生

文章出处:【微信号:zuosiqiche,微信公众号:佐思汽车研究】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电阻柜的发展史

    电阻柜发展史
    的头像 发表于 03-08 15:22 115次阅读

    V2X如何实现道路弱势群体保护?#车联网#C-V2X#道路安全

    车联网
    虹科卫星与无线电通信
    发布于 :2024年01月12日 14:49:24

    德思特分享丨V2X在做什么?连接未来智能出行的车联网(下)

    在之前的文章中,我们详细介绍了什么是V2X,并且展示了V2X软件堆栈和应用程序如何为汽车行业提供互联,本期文章我们将分享V2X技术如何助力智慧交通建设以及备受关注的V2X
    的头像 发表于 12-25 15:04 164次阅读
    德思特分享丨<b class='flag-5'>V2X</b>在做什么?连接未来智能出行的车联网(下)

    德思特分享 | V2X在做什么?连接未来智能出行的车联网(下)

    在之前的文章中,我们详细介绍了什么是V2X,并且展示了V2X软件堆栈和应用程序如何为汽车行业提供互联,本期文章我们将分享V2X技术如何助力智慧交通建设以及备受关注的V2X
    的头像 发表于 12-22 11:33 245次阅读
    德思特分享 | <b class='flag-5'>V2X</b>在做什么?连接未来智能出行的车联网(下)

    德思特分享 | V2X在做什么?连接未来智能出行的车联网(上)

    通常在道路行驶中,驾驶员只能依靠自己的视野来察觉其他车辆和行人。然而,V2X技术的引入改变了这一点。V2X技术是什么?如何为汽车行业提供互联?又如何实现智慧交通的共享?V2X将会怎么发展
    的头像 发表于 12-22 11:28 343次阅读
    德思特分享 | <b class='flag-5'>V2X</b>在做什么?连接未来智能出行的车联网(上)

    轻触开关的工作原理和应用探析

    轻触开关的工作原理和应用探析  轻触开关是一种常见的电子开关装置,在我们的日常生活中被广泛应用于各种电子设备和电路中。它的工作原理是通过轻触开关元件的力学结构和内部电气设计来实现的。本文将详尽、详实
    的头像 发表于 12-21 10:50 719次阅读

    机器人技术的发展史简介

    机器人的诞生地在美国,1962年美国研制出世界上第一台工业机器人,经过30多年的发展,美国现已成为世界上的机器人强国之一,基础雄厚,技术先进。综观它的发展史,道路是曲折不平坦的。
    发表于 12-20 10:17 565次阅读

    如何将V2X技术应用到汽车中?# 车联网 # V2X # C-V2X

    V2X技术
    虹科卫星与无线电通信
    发布于 :2023年12月19日 16:50:25

    V2X如何解决交通的“野蛮游戏”?# V2X# C-V2X# 车联网

    网络通信车联网
    虹科卫星与无线电通信
    发布于 :2023年12月18日 10:58:35

    你不知道的FPC,它的发展史竟然是这样的!

    你不知道的FPC,它的发展史竟然是这样的!
    的头像 发表于 11-15 10:48 446次阅读

    CMOS发展史

    电路元器件电容晶体管电子技术电子diy
    学习电子知识
    发布于 :2023年08月30日 23:07:19

    DOS/Windows 操作系统的发展史

    来说说微软的DOS和Windows系列的发展史
    的头像 发表于 08-01 18:41 1010次阅读
    DOS/Windows 操作系统的<b class='flag-5'>发展史</b>

    回顾易失性存储器发展史

    易失性存储器的发展历程 继续关于存储器的发展回顾,上期我们回顾了非易失性存储器的发展史,本期内容我们将回顾易失性存储器的发展历程。易失性存储器在计算机开机时存储数据,但在关闭时将其擦除
    的头像 发表于 06-28 09:05 956次阅读

    互联网网络发展史(2)#计算机网络

    计算机网络
    未来加油dz
    发布于 :2023年06月01日 23:31:57

    探析电源管理IC低压差稳压器(3): LDO选型指南

    = 0.285W 在此条件下,功率为0.285W不会造成温升太大,是属合理的功率设计。 假设条件(2) :Vin=15V,Vout=3.3V,Iout=50mA,LDO功率计算如下: ( 15- 3.3 )
    发表于 05-29 12:45