0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用tensorflow快速搭建起一个深度学习项目

lviY_AI_shequ 来源:未知 作者:李倩 2018-10-25 08:57 次阅读

在上一讲中,我们学习了如何利用numpy手动搭建卷积神经网络。但在实际的图像识别中,使用numpy去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用Tensorflow去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用Tensorflow搭建一个卷积神经网络。

我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过Tensorflow快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:

先对数据进行简单的预处理并查看训练集和测试集维度:

X_train = X_train_orig/255.X_test = X_test_orig/255.Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))print ("number of test examples = " + str(X_test.shape[0]))print ("X_train shape: " + str(X_train.shape))print ("Y_train shape: " + str(Y_train.shape))print ("X_test shape: " + str(X_test.shape))print ("Y_test shape: " + str(Y_test.shape))

可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。

创建placeholder

首先需要为训练集预测变量和目标变量创建占位符变量placeholder,定义创建占位符变量函数:

def create_placeholders(n_H0, n_W0, n_C0, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y') return X, Y

参数初始化

然后需要对滤波器权值参数进行初始化:

def initialize_parameters(): """ Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1, "W2": W2} return parameters

执行卷积网络的前向传播过程

前向传播过程如下所示:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用Tensorflow搭建上述传播过程如下:

def forward_propagation(X, parameters): """ Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None) return Z3

计算当前损失

在Tensorflow中计算损失函数非常简单,一行代码即可:

def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y)) return cost

定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是Tensorflow帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。

封装模型

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): """ Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) # Initialize parameters parameters = initialize_parameters() # Forward propagation Z3 = forward_propagation(X, parameters) # Cost function cost = compute_cost(Z3, Y) # Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

对训练集执行模型训练:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

训练迭代过程如下:

我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用Tensorflow快速搭建起一个深度学习系统了。

注:本深度学习笔记系作者学习 Andrew NG 的 deeplearningai 五门课程所记笔记,其中代码为每门课的课后assignments作业整理而成。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4562

    浏览量

    98625
  • 深度学习
    +关注

    关注

    73

    文章

    5219

    浏览量

    119860
  • tensorflow
    +关注

    关注

    13

    文章

    313

    浏览量

    60240

原文标题:深度学习笔记12:卷积神经网络的Tensorflow实现

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPGA在深度学习应用中或将取代GPU

    ,这使得它比般处理器更高效。但是,很难对 FPGA 进行编程,Larzul 希望通过自己公司开发的新平台解决这个问题。 专业的人工智能硬件已经成为了独立的产业,但对于什么是深度
    发表于 03-21 15:19

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
    的头像 发表于 01-08 09:25 315次阅读
    如何使用<b class='flag-5'>TensorFlow</b>构建机器<b class='flag-5'>学习</b>模型

    PyTorch与TensorFlow的优点和缺点

    转载自:冷冻工厂   深度学习框架是简化人工神经网络 (ANN) 开发的重要工具,并且其发展非常迅速。其中,TensorFlow 和 PyTorch 脱颖而出,各自在不同的机器学习领域
    的头像 发表于 10-30 09:56 484次阅读
    PyTorch与<b class='flag-5'>TensorFlow</b>的优点和缺点

    深度学习在语音识别中的应用及挑战

    一、引言 随着深度学习技术的快速发展,其在语音识别领域的应用也日益广泛。深度学习技术可以有效地提高语音识别的精度和效率,并且被广泛应用于各种
    的头像 发表于 10-10 18:14 473次阅读

    iTOP-RK3588开发板使用 tensorflow框架

    TensorFlow软件库或框架,由 Google 团队设计,以最简单的方式实现机器学习深度
    发表于 10-08 10:04

    如何用BMlang搭建Tensorflow模型?

    在EVM1684上如何用BMlang搭建Tensorflow模型,求助官方demo。
    发表于 09-18 07:00

    深度学习在医学图像分割与病变识别中的应用实战

    突破性的进展。 代码实例下面通过代码实例,演示如何使用Python和深度学习TensorFlow进行医学图像分割与病变识别。这里以
    发表于 09-04 11:11

    深度学习框架和深度学习算法教程

    深度学习框架和深度学习算法教程 深度学习是机器学习
    的头像 发表于 08-17 16:11 695次阅读

    深度学习框架对照表

    深度学习框架,并对它们进行对比。 1. TensorFlow TensorFlow是由Google Brain团队开发的一款深度
    的头像 发表于 08-17 16:11 486次阅读

    深度学习算法库框架学习

    深度学习算法库框架的相关知识点以及它们之间的比较。 1. Tensorflow Tensorflow是Google家的深度
    的头像 发表于 08-17 16:11 428次阅读

    深度学习算法的选择建议

    常重要的。本文将提供一些选择建议,以及如何决定使用哪种框架和算法。 首先,选择框架。目前,深度学习领域最流行和使用最广泛的框架有TensorFlow、PyTorch、Keras和Caffe。以下是每个框架的优缺点:
    的头像 发表于 08-17 16:11 362次阅读

    深度学习框架tensorflow介绍

    深度学习框架tensorflow介绍 深度学习框架TensorFlow简介
    的头像 发表于 08-17 16:11 1365次阅读

    深度学习框架是什么?深度学习框架有哪些?

    深度学习框架是什么?深度学习框架有哪些?  深度学习框架是一种软件工具,它可以帮助开发者轻松
    的头像 发表于 08-17 16:03 1694次阅读

    什么是深度学习算法?深度学习算法的应用

    。 在深度学习中,使用了一些快速的算法,比如卷积神经网络以及深度神经网络,这些算法在大量数据处理和图像识别上面有着非常重要的作用。 深度
    的头像 发表于 08-17 16:03 1434次阅读

    深度学习算法简介 深度学习算法是什么 深度学习算法有哪些

    深度学习算法简介 深度学习算法是什么?深度学习算法有哪些?  作为一种现代化、前沿化的技术,
    的头像 发表于 08-17 16:02 6640次阅读