0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新型存储器结合了SRAM的速度和Flash的优势,看看未来有哪些存储器兴起

kus1_iawbs2016 来源:未知 作者:工程师郭婷 2018-09-05 15:51 次阅读

随着许多新技术的涌现,下一代存储器市场正在升温,但将这些产品引入主流市场仍面临一些挑战。

多年来,该行业一直致力于各种存储技术的研究,包括碳纳米管RAM、FRAM、MRAM、相变存储器和ReRAM。有些已推出,有些仍在研发中。这些不同类型的存储器都对应特定的应用领域,但都势必将在存储器家族中取代一个或者多个传统型存储。

在这个层次结构的第一层中,SRAM集成到处理器中以支持快速数据访问。层次结构中的下一层DRAM用于主存储器。磁盘驱动器和基于NAND的固态硬盘(SSD)则用于信息存储。(如下图)

图1:存储器层次结构-dram/SRAM和Flash具有相反的特性,这些特性令存储类存储器能填补空白

当前的存储器能够正常运作,但是它们正在努力跟上系统中数据和带宽需求的激增。例如,DRAM速度快但耗电量大,而NAND和硬盘驱动器既便宜但运行速度较慢。

这彰显了下一代存储器的用武之地。新型存储器结合了SRAM的速度和Flash的非易失性和良好的耐久性。这些技术拥有出色的规格,但它们要么迟迟未出现,要么效能不尽人意。

事实上,将许多新型存储器投入大规模生产一直是一个难题。它们依赖新型材料和转换机制,也难以制造或者运行,同时价格也非常昂贵。

总而言之,新型存储器仍然是利基产品,但是有很明显的进展。例如,英特尔正在持续推进名为3D XPoint的下一代存储器。紧接着,GlobalFoundries、三星(Samsung)、台积电(TSMC)和联华电子(UMC)正在为嵌入式市场开发新的存储器类型。有分析认为,“真正重要的是,逻辑晶圆厂正在为嵌入式存储器开发MRAM和resistance RAM。对于独立的存储器市场来说,成本很高。只有愿意投入巨大成本的人才会考虑。”

因此,传统存储器仍然是市场上的主流产品,但新型存储器也为我们提供了一些选择。

3D XPoint的兴起

3D XPoint的兴起已经持续一段时间,下一代存储器还在升级。每一种新型存储器都会被宣称它们性能比传统存储器更优越。

不过,至少目前来说,新的存储器不可能取代DRAM、Flash和SRAM。

这一切都归结于性能、容量与成本。举个例子,指定存储器的单元格大小等于特特征尺寸(F)乘以4的平方。最小的单元格大小是4F2。最新的3D NAND包含每个单元储存4个数据(QLC),理论上可以转换为1F2的单元大小。

但是,“如果它想取代NAND,就必须比1F2更便宜。据我所知,我们在有生之年不会看到这种情况。”身为存储器专家的Nantero公司董事会成员Ed Doller如是说道。

同理,若要取代DRAM,新的存储器类型必须更便宜,而且必须在它周围有一个完整的基础设施,比如DRAM兼容的接口控制器

那如果新的存储器类型不会取代传统的技术,那么它们适合应用在哪些地方?Lam Research高级技术总监Alex Yoon曾在一篇博客中写道,“云计算和最新的移动产品等应用正在推动对新型存储器的需求,这些新型存储器将DRAM的速度与NAND更高的比特密度以及更低的成本结合起来。”为了达到这些标准,科研人员正在探索一些新技术。有些公司瞄准的是嵌入式应用,比如系统级芯片(system-on-chips,SoCs),而另一些公司则专注于存储类存储器空间。

目前,新型存储器已经开拓了现在的存储器无法满足的利基市场,甚至还从DRAM和Flash那里抢占了一些市场,但目前还不清楚这种新型存储器是否会成为主流技术。

目前为止,依然没有一种能够满足所有需求的新型存储技术。因此,随着时间的推移,客户可能会使用一种或多种存储器技术。“它们是竞争关系,功能存在重叠,但是它们在市场上都有属于各自的一席之地。”ReRAM供应商Crossbar的营销和业务开发副总裁Sylvain Dubois表达了他的观点。

图片2:存储器层次结构

但值得一提的是,有一项技术正在进展中。市场的一个重大变化是3D XPoint的崛起,这是英特尔(Intel)和美光(Micron)开发的下一代技术。

当3D XPoint在2015年正式推出时,它被称为是一种介于DRAM和NAND之间的存储技术。它的速度和耐久性都是NAND的1000倍。

然而,实际上3D XPoint的推出被延迟了,并且没有达到那些标准。不过,分析认为,“3D XPoint可能被过度炒作了。但3D XPoint仍然是相当惊人的,其盈利将超过所有其他非易失性存储器的总和。”

事实上,在几次延迟之后,英特尔正在升级基于3D XPoint的SSD和其他产品。最终,英特尔将把这项技术用于服务器里的DIMM。基于3D XPoint,英特尔将拥有速度最快、耐久性最高的SSD。

有数据显示,到2020年,3D XPoint的收入预计将达到15亿美元。相比之下,MRAM在2017年的销售额为3600万美元。其他新型存储器的营收则少到不容易被注意。但相比DRAM和NAND,新型存储器的营收仍然显得苍白无力。

与此同时,3D XPoint是基于一种叫做相变存储器(PCM)的技术。PCM以非晶相和晶体相存储信息。它可以通过外部电压进行可逆切换。

基于双层堆叠结构,3D XPoint采用20nm几何尺寸,具有128千兆位的密度。根据相关数据,其读取延迟大约为125ns,持续时间为200K。

图片3:3D XPoint架构

这项技术速度很快,但并没有达到NAND的1000倍。它的成本也比NAND高得多,这不是DRAM的替代品,它在某些程度上为DRAM提供了补充。

3D XPoint的下一步是什么?最大的机遇在于DIMM的空间。英特尔的DIMMs由将会集成3D XPoint和DRAM,并利用3D XPoint的性能特点来优化处理器和架构。

不过,这项技术的未来仍不确定。英特尔和美光正在分别开发3D NAND和3D XPoint。正如之前宣布的,两家公司将完成目前两类产品的开发,然后独立开发这些技术。目前还不清楚美光是否会推出3D XPoint产品。迄今为止,美光还没有推出3D XPoint产品,因为这项技术似乎与其DRAM和NAND产品存在竞争。

显然,英特尔有资源独自开发3D XPoint。但问题是,英特尔是否会利用这项技术收回其大规模的研发投资。

与此同时,这行业还在开发其他新的存储器,如MRAM和ReRAM。与3D XPoint一样,MRAM和ReRAM可以作为独立产品进行生产和销售。

3D XPoint不是作为嵌入式存储器出售的。相比之下,MRAM和ReRAM可以用于嵌入式存储市场。

对于MRAM,该行业正在开发下一代技术,称为自旋传递转矩MRAM(STT-MRAM)。STT-MRAM利用电子自旋的磁性为芯片提供非挥发性特性。它结合了SRAM的速度和Flash的非波动性,具有无限的持久性。

图片4:STT-MRAM存储单元

在传统存储器中,数据以电荷的形式存储。相比之下,MRAM使用一个磁隧道结(MTJ)存储单元作为存储单元。

MTJ由一个存储器堆栈组成,它可以为给定的应用程序重新配置。但在调优MTJ堆栈时,在持久度、数据保留和写入脉冲宽度方面存在一些权衡。在MTJ堆栈的设计中,存在固有的权衡。例如,你可以通过放弃数据保留来优化栈的耐久性,反之亦然。

这允许人们以不同的方式处理不同的应用。例如,如果你正在执行嵌入式MRAM,并且正在尝试构建一个用于代码存储的嵌入式NVM,那么提高数据保留和放弃持久性的能力则非常适合这个应用。

迄今为止,Everspin是唯一一家基于STT-MRAM的独立部件的公司。Everspin已经推出一款基于40nm制程的256兆比特器件,目前正在研制一款28nm制程的1gb器件。Avalanche、Crocus、三星、东芝、SK Hynix、Spin Transfer等公司仍在研发STT-MRAM,但尚未投产。

嵌入式MRAM的发展势头正在增强。GlobalFoundries、三星(Samsung)、台积电(TSMC)和联华电子(UMC)正在为代工客户开发28nm/22nm的嵌入式MRAM。

在嵌入式市场中,行业使用微控制器(MCUs)。MCUs在同一芯片上集成了多个组件,如CPU、SRAM、嵌入式存储器和外设。嵌入式存储器(如NOR Flash)用于代码存储。

基于40nm及以上的嵌入式或Nor Flash的MCU处于出货阶段。目前,该行业正在研发28nm制程的MCU,16nm/14nm制程芯片。

问题是,在28nm及更大范围内扩展嵌入式Flash是很困难的。UMC产品营销总监David Hideo Uriu说道,“许多人认为28nm/22nm制程将是eFlash的终结,不是因为可扩展性的限制,而是因为经济障碍。”“你能将嵌入式Flash扩展到28nm以上吗?”答案是肯定的,因为我们将在22nm节点支持它。但是宏观设计的本质上和28nm是一样的。

“一旦超过28nm/22nm,eFlash将需要多于15个掩模加法器在前端线的进程。额外的掩模加法器制造了成本障碍,为铸造行业带来挑战,无论是寻求替代非易失性存储器,还是继续投资额外的资源以推动现有eFlash技术的边界,”UMC产品营销总监David Hideo Uriu补充道。

因此,功耗低、读写速度快的嵌入式MRAM正在开发进程中,将会取代28nm及以上的嵌入式NOR Flash。这是GlobalFoundries前沿CMOS副总裁Mike Mendicino的看法。

例如,低功耗单片机可能需要快速唤醒和安全功能。Mendicino认为,“MRAM可以取代传统的嵌入式Flash,也可以替代一些SRAM。”

对于高速缓存,SRAM占据了芯片很大一部分。嵌入式MRAM还可以承担一些基于SRAM的缓存功能,从而节省空间和成本。MRAM本身可以在这些设备上节省电能。“但如果人们把一个性能出色的MRAM放到一个平庸的平台上,那是难以实现的。”Mendicino如是说道。

然而,嵌入式MRAM仍然存在一些挑战,即是在设计中的集成技术能力。成本也是另一个重要因素。“客户希望新兴的嵌入式非易失性存储器与eFlash一样具有成本效益。这一预期给整个行业带来挑战,但这将是很难实现的,但解决方案应该能够以现在的成本点来维持当前的价格竞争力。”UMC的Uriu说。

与此同时,ReRAM也取得进展,但尚未达到3D XPoint和MRAM的水平。一般来说,ream有两种类型——氧空位ream和CBRAM。

在这两种情况下,开关介质位于顶部和底部电极之间。当正电压作用于电极上时,在两个电极之间形成导电丝。灯丝由离子原子组成。当在底部电极上施加负压时,导电丝就断裂了。

图片5:ReRAM运作过程

ReRAM涉及一个复杂的过程。MRAM和ReRAM都有类似的读取和数据保留规格。但与ReRAM相比,MRAM具有更高的温度规格,这令MRAM在汽车等应用领域更具优势。UMC的Uriu表示:“简单来说,MRAM可以更多地运用于汽车,但ReRAM目前只适用于消费级应用。”

图片6:MRAM vs.ReRAM

到目前为止,Adesto和Panasonic是唯一推出独立运行的ReRAM的两家公司。Crossbar也在开发独立设备,不过这家公司专注于IP授权模式。嵌入式方面,Crossbar与Microsemi公司合作。Microsemi正在努力将嵌入式ReRAM集成到高级SoC或FPGA中,制程是在14nm或12nm之间。

除此之外,其他公司也在开发ReRAM项目。嵌入式ReRAM主要应用于AI/机器学习、计算、家庭自动化、工业和安全。

其他新型存储器

FRAM是另一种值得关注的技术。使用铁电电容器存储数据,FRAM是非易失性存储器,具有无限的耐久性。

传统的FRAMs的扩展性是有限的。为了解决这些问题,创业公司Ferroelectric Memory(FMC)正在开发下一代FRAM,称为铁电场效应晶体管(FeFET)。

仍在研发阶段的FeFET并不是一种新设备。FeFET利用现有的基于氧化铪的金属闸极堆叠逻辑晶体管。然后对闸级绝缘子进行铁电性质的改性。

FMC的CEO Stefan Muller表示:“我们所做的是一种基于晶体管的铁电存储器。我们正在推进嵌入式领域的发展。”

同时,在研发方面,Nantero正在研发碳纳米管。对于嵌入式应用,富士通预计将提供第一款基于Nantero技术的纳米碳管RAM。

这个策略是为逻辑电路做嵌入式存储器。富士通将在2019年扩大这一规模。来自Nantero的Doller说道,“与此同时,我们正在研发的是一款与DRAM兼容的高容量设备。这将与DRAM展开竞争。”

因此,下一代存储器正在不断推进,为OEM厂商提供了大量的选择。但要成为主流设备,对于它们来说,还有很长一段路要走。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FlaSh
    +关注

    关注

    10

    文章

    1549

    浏览量

    146632
  • 存储器
    +关注

    关注

    38

    文章

    7139

    浏览量

    161966
  • sram
    +关注

    关注

    6

    文章

    742

    浏览量

    113896

原文标题:下一代存储器强势崛起

文章出处:【微信号:iawbs2016,微信公众号:宽禁带半导体技术创新联盟】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    STM32F103DMA模块存储器存储器可以实现循环吗?

    STM32F103 参考手册中循环模式部分描述:DMA模块存储器存储器不能与循环模式同时使用。但是经过实际测试,是可以实现循环的,请问怎么理解这句话呢?
    发表于 04-02 06:23

    浅谈flash存储器的特点和优缺点

    Flash存储器的写操作具有特殊性,它只能将数据位从1写成0,而不能从0写成1。因此,在对存储器进行写入操作之前,必须先执行擦除操作,将预写入的数据位初始化为1。
    的头像 发表于 02-19 11:37 876次阅读
    浅谈<b class='flag-5'>flash</b><b class='flag-5'>存储器</b>的特点和优缺点

    如何使用SCR XRAM作为程序存储器和数据存储器

    1) 允许一个物理内存(即 XRAM) 可同时作为程序存储器和数据存储器进行访问 如何使用 SCR XRAM 作为程序存储器和数据存储器。 1) 用于
    发表于 01-30 08:18

    简单认识静态随机存取存储器

    ,VM)两大类。例如,人们熟知的闪速存储器 ( Flash Memory,简称 Flash)就属于 NVM,静态随机存取存储器 (Static Random Access Memory
    的头像 发表于 11-16 09:14 479次阅读

    NAND Flash存储器的基础知识

    随着信息技术的飞速发展,数据存储需求日益增长。作为一种新型的非易失性存储器,NAND Flash因其高容量、低功耗、高密度等优势,在各个领域
    发表于 09-27 18:26 1693次阅读

    NAND Flash和NOR Flash存储器的区别

    摘要:本文主要对两种常见的非易失性存储器——NAND Flash和NOR Flash进行了详细的比较分析。从存储容量、性能、成本等方面进行了深入探讨,以帮助读者更好地理解这两种
    发表于 09-27 17:46 574次阅读

    存储器的分类及其区别

    存储器可分为易失性存储器和非易失性存储器两类,前者在掉电后会失去记忆的数据,后者即使在切断电源也可以保持数据。易失性存储器又可分为 DRAM(Dynamic RAM)和
    发表于 09-15 15:59 742次阅读
    <b class='flag-5'>存储器</b>的分类及其区别

    Flash存储器的工作原理和基本结构

      Flash存储器是一种非易失性存储器,即使在供电电源关闭后仍能保持片内信息。
    发表于 09-09 16:22 3006次阅读

    AXI内部存储器接口的功能

    库的慢-慢工艺点对块进行合成,以200 MHz的目标速度确认时序特性。 接口存储器端口上的信号符合RAM编译为TSMC CL013G工艺技术生产的单端口同步存储器组件所要求的时序要求
    发表于 08-21 06:55

    PrimeCell AHB SRAM/NOR存储器控制(PL241)技术参考手册

    可访问外部存储器的AHB端口。AHB端口具有到内存控制的桥接接口。一个单独的AHB端口用于配置内存控制。SMC的特定配置被实例化以针对特定存储
    发表于 08-02 07:14

    回顾易失性存储器发展史

    ,非易失性存储器在计算机关闭后存储数据仍保留在计算机中。易失性存储器的主要特征是它们需要电源来维持其存储状态。主要分为两种类型:静态随机存取存储器
    的头像 发表于 06-28 09:05 955次阅读

    半导体存储器简介

    静态随机存储器(SRAM: Static Random Access Memory) 和动态随机存储器DRAM(Dynamic Random Access Memory)。
    发表于 06-25 14:30 2205次阅读
    半导体<b class='flag-5'>存储器</b>简介

    存储器集成电路测试

    存储器是集成电路领域的通用器件,其市场用量巨大,从类型上分为 ROMEPROM、E2PROM、SRAM、DRAM、FLASH 等。
    发表于 05-30 09:56 276次阅读
    <b class='flag-5'>存储器</b>集成电路测试

    单板硬件设计:存储器( NAND FLASH)

    flash中运行。嵌入式系统多用一个小容量的nor flash存储引导代码,用一个大容量的nand flash存放文件系统和内核。 1.2 存储器
    发表于 05-19 15:59

    如何为RT1172选择FLASH存储器

    通过quad SPI接口选择FLASH存储器与RT1172一起使用时,应该将其设置为Buffer Read模式还是Continuous Read模式?
    发表于 04-27 06:03