0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探讨新宙邦微混动力电池电解液的研究与应用进展

h1654155972.5933 来源:未知 作者:胡薇 2018-09-04 15:05 次阅读

为了提高锂离子电池的功率和低温性能,就必须降低整个锂离子电池放电过程的各种阻抗。这些阻抗有些比较大,有些比较小,且受电解液的成分和温度等多种因素的影响。

近日,深圳新宙邦科技股份有限公司石桥博士做了“提升轻混/微混用12-48V锂离子电池的功率特性以及低温性能的功能电解液的研究与应用进展”的主题演讲。他从锂离子的传导过程、溶剂、锂盐浓度、添加剂等方面介绍影响影响各阻抗的与电解液相关的因素。

众所周知,在锂电池的放电过程,锂离子从负极里脱出后首先进入SEI,然后在SEI中传导,再进入电解液中被溶剂化,接下来溶剂化的锂离子在电解液中传导,到达正极表面后首先脱溶剂化进入CEI,然后在CEI中传导,最后嵌入正极。如下图所示。

锂离子电池放电过程的示意图

在锂离子电池放电过程中,每一步都对应一个阻抗,这个阻抗的大小与很多因素有关,下文将主要列出可能影响各阻抗与电解液相关的因素。

在锂离子传导过程中,SEI和CEI的特性有着非常重要的影响。基于不同方面的性能需求,对SEI和CEI的要求存在一定的冲突。

从提高功率和低温特性的角度来看,希望SEI和CEI尽量薄,不要太致密且导电性要好;但是从提高电池的高温性能和循环性能来讲,希望CEI和SEI厚一些或者致密一些且强度和韧性要好。

在溶剂方面,羧酸酯溶剂可以显著提高电池的低温性能,尤其是在-30℃以下的温度下,羧酸酯类溶剂的性能显著优于碳酸酯类溶剂。但羧酸酯类溶剂对负极SEI具有一定的破坏作用。比如常用的羧酸酯溶剂EP,用在磷酸铁锂电池上,低温放电平台有明显提高,但高温储存性能和循环性能会显著下降,该溶剂对负极的SEI有明显破坏作用,目前来看并不适合作为动力电池的溶剂。

对于轻混及微混车来说,由于对功率特性及低温特性的要求很高,采用大量低粘度的线性碳酸酯(DMC和EMC)是目前的必然选择。

主要由于EMC的粘度高于DMC且介电常数低于DMC,因此用EMC替代部分DMC会增加电池在常温下的DCIR,但是一定量的EMC取代DMC后能够提高电池的低温性能,其原因可能是由于EMC与锂离子的溶剂化作用弱,降低了低温下脱溶剂化这一步的活化能。

而环状碳酸酯(EC和PC)由于介电常数高且粘度大,在电解液中的含量需要综合考虑室温功率特性和低温性能来确定。如下图所示,溶剂配比的选择是一个平衡的艺术。

同时,锂盐浓度对功率特性和低温性能也有一定的影响,且存在一个最优的量,需要根据具体情况来优化。

在添加剂方面,其对SEI和CEI的特性有非常显著的影响,对电池的功率特性和低温性能的影响也是非常大的。

目前,添加剂对阻抗的影响有三种典型的类型:一是很多优良的正负极成膜添加剂会显著增大界面阻抗,如最常用的性能优异的正负极成膜添加剂VC和PS都会明显增加正负极的界面阻抗;二是一些特殊的成膜添加剂在一定情况下可以降低界面阻抗,如DTD;三是一些锂盐型添加剂可以显著降低界面阻抗,如SCT97。详情请看下图。

新宙邦石桥博士介绍,对于功率和低温性能要求高的电池,添加剂有三种解决方法。一是减少或者干脆不使用阻抗比较高的成膜添加剂;二是采用低阻抗的成膜添加剂;三是采用低阻抗的锂盐型添加剂。添加剂的选择和组合也是一个平衡的艺术。

在三元材料动力电池中,最常用的两款经典添加剂是VC和PS,可以显著改善电池的高温存储性能和循环性能,但是最大缺陷是会显著增大阻抗,降低功率和低温性能。针对这种情况,新宙邦开发了低阻抗的新型负极成膜添加剂LDY269和锂盐型添加剂SCT97。

其中,新型负极成膜添加剂LDY269添加剂特点是在负极上成膜时界面阻抗会有所降低,不会象VC一样增大负极的界面阻抗。

SEI和CEI的XPS分析也证实了LDY269所形成的SEI和CEI的厚度会明显低于VC所形成的SEI和CEI。

电池性能的测试结果显示:当VC的含量增加时,DCIR的增加很明显,而LDY269在含量低时不会增大DCIR,在含量高时DCIR会增大一些,但是相比VC还是要明显低;另外,LDY269的高温储存性能要明显优于VC,尤其是高温下的产气明显少。

而锂盐型添加剂SCT97能够显著降低电池的内阻,提高低温性能,且能够显著提高高温储存性能。用于正极为NMC532的电池时,SCT97的效果要显著优于PS。

新宙邦石桥博士表示:“公司用LDY269与SCT97组合时,会获得比VC组合更好的效果,不仅阻抗更低一些,高温储存性能也更好,尤其是在0℃充电时不会象VC组合一样出现明显析锂的情况,如下图所示。同时,公司客户在开发48V锂离子电池系统时,采用了这个添加剂组合,反馈的结果不仅功率特性明显提升,高温循环性能也很好。”

未来,随着电池能量密度逐渐提高,采用高镍材料是必然方向。石桥博士表示:“在高镍材料中,现有的添加剂VC和SCT97组合的性能不能满足要求,尤其是高温储存性能较差,其原因主要在于这两个添加剂对高镍正极缺乏有效的保护作用。”

目前,含硫添加剂如PS和DTD可以很好地保护高镍正极,显著改善电池的高温储存性能,但这种添加剂组合会显著增大电池阻抗,用于功率和低温性能要求高的电池时存在严重的困难,如下图所示。

针对这一问题,新宙邦正在开发适用于高镍材料的低阻抗高温添加剂,其中几个新的添加剂如LDY274和LDY406有着良好的效果,能够降低电池阻抗,且能够显著改善高温储存性能,如下图所示。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 动力电池
    +关注

    关注

    111

    文章

    4378

    浏览量

    76286
  • 新宙邦
    +关注

    关注

    0

    文章

    14

    浏览量

    7511
  • 电解液
    +关注

    关注

    10

    文章

    780

    浏览量

    22696

原文标题:【大族激光•技术π】新宙邦的微混动力电池电解液策略

文章出处:【微信号:weixin-gg-lb,微信公众号:高工锂电】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    动力锂离子电池安全技术的进展

    在一定程度上降低电池不安全行为的发生概率。要根本解决,需要研究防短路、防过充、防热失控、防燃烧及不燃性电解液的新技术,建立电池自激发安全保护机制。  1.防止
    发表于 05-29 10:23

    电解液电容器老化电压与电解液火花电压的关系

    有关铝电解电容器的老化电压与电解液的关系,1、高压规格电容器老化电压可以高出电解液火花电压吗?可以高出多少?2、电解液的火花电压在电容器内密闭状态下,
    发表于 12-30 16:23

    锂离子电池电解液超全面介绍 有何神秘之处?

    电池不可逆容量的损失。导电添加剂:对提高电解液导电能力的添加剂的研究主要着眼于提高导电锂盐的溶解和电离以及防止溶剂共插对电极的破坏。其按作用类型可分为与阳离子作用型(主要包括一些胺类和分子中含有两个氮
    发表于 02-22 11:59

    关于锂离子动力电池在新能源汽车领域安全性的分析与探究

    时造成的危害。   简单来说,锂离子动力电池主要由正极、负极、隔膜、电解液电池外壳等构成。若按正极材料来分,主要分为钴酸锂、锰酸锂、磷酸铁锂以及镍钴锰酸锂三元材料等。按电芯的结构形状来分,主要分为圆柱
    发表于 05-05 16:13

    光纤激光打标机:动力电池中激光应用

    及自动化程度高,运用于动力电池焊接领域可大大提高电池的安全性、可靠性,延长使用寿命。其作为一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个动力电池生产流程中的关键工
    发表于 09-29 13:42

    电解液——锂电池的‘血液’

    重要影响。贺艳兵说,科研人员在努力提升动力电池的高能量密度和快充速度,但是在追求这两个指标的过程中,对电池循环体系会带来安全性隐患,这也正是研制电池电解液的挑战。这种挑战主要表现在两个
    发表于 08-07 18:47

    锂离子动力电池隔膜浅谈

    、封装材料等这五个部分组成。下面我们就来谈谈锂离子动力电池隔膜的制备及技术要求。  隔膜的功能和技术要求  电池隔膜是一类多孔隙薄膜,在吸收电池电解液后,可隔离正、负极以防止短路。同时
    发表于 10-10 15:23

    卡尔费休滴定仪更换电解液步骤介绍

    日后的使用有帮助。一、从电解槽瓶中取出电解电极、测量电极、干燥管、注射塞等附件;二、将电解液电解槽瓶中倒出;三、用无水乙醇清洗电池瓶、
    发表于 03-20 11:13

    动力电池技术发展瓶颈分析及建议

    。最关键的是锂电池电解液本身便是可燃性材料。全球许多锂电池研究机构都在研究利用难燃性的电解液,或
    发表于 05-07 10:11

    回收动力电池动力电池回收,全国动力电池回收,动力电池高价回收,回收软包动力电池

    我们将为贵司提供热情周到的,咨询、报价! 电话:***彭'SQQ QQ752127311动力电池模组上门收购 动力电池模组回收 动力电池模组现金回收动力电池模组梯次回收锂
    发表于 11-02 15:33

    动力电池研究进展

    动力电池研究进展 摘要:本文综述了动力电池的研发历程,对各类车载电池的性能、价格等进行了比较,介绍了动力电池在EV、HEV和EB的应用
    发表于 10-29 10:12 1440次阅读

    锂离子电池电解液研究进展

    锂离子电池电解液研究进展 锂离子电池的性能和稳定性方面,电解液一直居于中心位置。目前电池界对新
    发表于 10-30 14:51 940次阅读

    新宙邦电解液研究进展和成果

    新宙邦在新型功能电解液添加剂TPP、新型锂盐-LiHFDF、固态电解质、阻燃电解液等领域的研究进展和成果成果分享。
    的头像 发表于 09-28 10:36 3010次阅读

    动力电池中锂电池电解液解析

    动力电池是电动汽车的关键部件,其性能直接决定了电动车的续航里程、环境适应性等关键参数。当前主流动力电池为锂离子电池,具有能量密度高、体积小、无记忆效应、循环寿命长等优点,但仍然存在续航里程不足的问题。电极材料决定了
    的头像 发表于 11-06 19:09 3817次阅读

    吴憨子:动力电池电解液产业链与温度传感器

    一、 定义与分类 动力电池电解液电解质锂盐、溶剂和添加剂组成,不同的电解液在性能和属性上有一 定差异,是由合成配方的不同决定。    ■ 电解液
    的头像 发表于 04-07 06:57 370次阅读