0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIT研发新型摄影光学元件,开启光学成像新纪元

MEMS 来源:未知 作者:工程师郭婷 2018-08-24 15:07 次阅读

据麦姆斯咨询报道,麻省理工学院(Massachu-setts Institute of Technology,MIT)的研究人员开发出了新型摄影光学元件,该器件是基于光学元件中光线的反射时间来捕捉图像,代替了依赖光学元件排列的传统方法。研究人员说,该新成像原理为时间/深度相机打开了传统摄影光学元件无法触及的新世界。具体地讲,MIT研究人员设计了一款新型光学元件,用于名为“条纹相机(streak camera)”的超快传感器,可分辨超短光脉冲图像。

目前,条纹相机及其他超快相机已被用于拍摄每秒1万亿帧的视频、扫描闭合的书籍、提供3D场景的深度地图以及其他应用。由于此类相机依靠传统光学元件拍摄图像,因此存在着各种各样的设计限制。例如,对于以毫米或厘米为单位的定焦透镜来说,透镜与成像传感器的距离必须等于或大于给定焦距,才能捕捉到图像,这就意味着镜头必须很长。

MIT媒体实验室(MIT Media Lab)的研究人员近期发表的论文提出了一种新技术,该技术可让光信号在透镜系统内精确定位的镜子之间来回反射。快速成像传感器可在每次反射时间内捕捉单独的图像,从而成像出一系列图像:每幅图像均对应于不同的时间点以及与透镜不同的距离。同时,每幅图像均可在特定的时间被访问。MIT研究人员将这种技术称为“时间折叠光学元件(time folded optics)”。该论文第一作者Barmak Heshmat认为:“当你手握快速传感器相机,来分辨通过光学元件的光时,你就可利用时间交换空间。这就是‘时间折叠(time folding)’的核心思想:你在此时看光,此时光传播的时间就等于你此时与光源的距离。因此就可以用新方法来排列光学元件,也就能实现以往难以企及的拍摄场景。

”新型光学元件架构包括了一组半反射式的平行镜子,用于减少或“折叠”每次光线在镜子间反射的焦距。研究人员通过在透镜与传感器之间放置一组镜子,可在不影响图像捕捉的前提下,将光学元件的排列距离缩减一个数量级。在该研究中,研究人员呈现了时间折叠光学元件在超快相机及其他深度感知成像器件的三种方式。这类相机也被称为“飞行时间(ToF)”相机,用于测量光脉冲从场景反射出并回到传感器的时间,以估算3D场景的深度。该论文的共同作者还包括:MIT计算机科学与人工智能实验室(MIT Computer Science and Artificial Intelligence Laboratory)的研究生Matthew Tancik、媒体实验室相机文化部门(Camera Culture Group)的博士生Guy Satat、媒体艺术与科学副教授及相机文化部门负责人Ramesh Raskar。

原理解析:将光路换算成时间该研究的光学系统的元件可将飞秒激光脉冲(1飞秒 = 1千万亿分之一秒)投射到场景中并照亮目标物体。传统摄影光学元件成像原理是:当光穿过曲面玻璃时,会改变光信号的形状,这种形状的改变可在传感器上创建图像。但该研究中光学元件的原理是:光信号并不会直接进入传感器,而是先在镜子间来回反射,用以精确捕捉并反射光线。研究者将其中的每一次反射称为“往返行程(round trip)”。在每次“往返行程”中,传感器会以特定的时间间隔捕捉一些光线,例如设定每30纳秒抓拍1纳秒。

光信号两镜子间“往返行程”示意图本研究的关键创新在于:每一次光的“往返行程”都会让焦点接近透镜,传感器依据焦点定位来捕捉图像。这样就可大幅缩小透镜尺寸。比如,条纹相机想要捕捉传统透镜的长焦图像:利用时间折叠光学元件,第一次“往返行程”将焦点定位在与靠近透镜的镜子组距离的两倍,此后每一次“往返行程”都使焦点与透镜离得越来越近。最后根据往返次数的不同来计算距离,因此传感器就可以放置在离透镜很近的地方。将传感器放置在由总“往返行程”确定的精确焦点上,相机就可捕捉到清晰的图像以及光信号的不同阶段,所有图像均带有不同的时间编码,随着信号改变形状来产生图像。(最初的几张图片将是模糊的,但经过几次“往返行程”试探后,目标对象就会被准确聚焦。)

依据“光往返”次数计算距离,可缩减传感器与透镜的距离该论文中,研究人员通过飞秒光脉冲成像刻有“MIT”的掩模(mask)来证明,掩模距离透镜孔径53厘米。传统20厘米焦距透镜必须在离传感器约32厘米远的地方才能捕捉图像。与之相比,时间折叠光学元件在经过五次“往返行程”后就能将图像聚焦到焦点上,且与传感器距离仅3.1厘米。

传统镜头

改进后的镜头,长度大大缩短Heshmat认为,这项研究对于设计更紧凑的望远镜透镜捕捉来自太空的超快信号,亦或是设计尺寸更小且重量更轻的透镜拍摄地球表面,都是非常有用的。多变焦且色彩丰富接下来,研究人员尝试对“X”和“II”两种图案进行成像。两图案间隔约为50厘米,且均在相机视线范围内。“X”图案距透镜55厘米,而“II”图案距透镜只4厘米。通过精确地重新排列光学元件(如将透镜置于两镜子之间),使每次“往返行程”都在单次图像采集中放大了光线,就实现了整形光线。这就好像相机在每次往返中都能变焦。

当他们把激光发射进场景时,仅按一次快门,就可得到两幅独立且聚焦的图像(在第一次“往返”中捕捉X的图像,在第二次“往返”中捕捉II图像)。然后,研究人员展示了超快多光谱(或多色)相机。他们设计了两种颜色反射镜和一种宽带镜:一种颜色反射镜是通过反射颜色,以更接近透镜;另一种颜色反射镜则是通过反射第二种颜色,以从透镜前移开。利用此类相机成像带有“A”和“B”的掩模发现,第二种颜色照亮A,而第一种颜色照亮了B,时间均为十分之几皮秒。

这是由于当光线进入相机时,第一种颜色的波长会立即在第一个腔内来回反射,由传感器记录其时间。然而,第二种颜色的波长会穿过第一个腔进入第二个腔,这就会使它们到达传感器时间的略微延迟。由于研究人员了解不同颜色波长抵达传感器的时间,他们就可将相应的颜色叠加到图像上(如第一个波长是第一种颜色,第二个是第二种颜色)。Heshmat说,这些对于目前只能记录红外光的深度传感相机来说大有用处。Heshmat认为,该论文的关键贡献在于:它可以通过调整空腔间距或使用不同类型的空腔、传感器及透镜,来为多种光学元件设计打开大门。

Heshmat说:“核心信息就是,当你手握快速相机或者深度传感器时,你就不用像传统相机那样需要设计光学元件。你可以通过在恰当时间成像来实现更多的拍摄可能。”光子学实验室主任、加州大学伯克利分校电子与计算机工程教授Bahram Jalali说:“这项工作开发了时间维度,使得利用脉冲激光照明的超快相机实现了新功能。这为设计成像系统开辟了一条新道路。超快成像技术使得利用如组织等散射介质成像成为可能,这一工作有望改善医学成像,特别是手术显微镜。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2517

    文章

    47908

    浏览量

    739455
  • 计算机
    +关注

    关注

    19

    文章

    6627

    浏览量

    84320
  • 人工智能
    +关注

    关注

    1775

    文章

    43625

    浏览量

    230422

原文标题:MIT巧妙开发“时间折叠光学元件”,开启光学成像新纪元

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    浅谈超分辨光学成像

    分辨光学定义及应用 分辨光学成像特指分辨率打破了光学显微镜分辨率极限(200nm)的显微镜,技术原理主要有受激发射损耗显微镜技术和光激活定位显微镜技术。 管中亦可窥豹——受激发射损耗显微镜 传统
    的头像 发表于 03-15 06:35 124次阅读
    浅谈超分辨<b class='flag-5'>光学成像</b>

    基于光子纠缠的自适应光学成像技术应用

    对引导星的依赖给显微镜成像细胞和组织等不含亮点的样本带来了问题。科学家们利用图像处理算法开发了无引导星的自适应光学系统,但这些系统可能会因结构复杂的样本而失效。
    发表于 03-11 11:29 102次阅读
    基于光子纠缠的自适应<b class='flag-5'>光学成像</b>技术应用

    新技术:使用超光学器件进行热成像

    研究人员开发出一种新技术,该技术使用超光学器件进行热成像。能够提供有关成像物体的更丰富信息,可以拓宽热成像在自主导航、安全、热成像、医
    发表于 01-16 11:43 135次阅读

    一文详解光学镜头及摄像模组

    光学镜头及摄像模组作为各类设备中光学成像系统的核心组件,其性能直接决定了成像质量的好坏、算法的实现和设备最终的使用效果,因此,下游客户在选择光学镜头及摄像模组厂商时,通常需要考虑其
    的头像 发表于 01-15 11:04 954次阅读
    一文详解<b class='flag-5'>光学</b>镜头及摄像模组

    2023十大科技趋势之一:计算光学成像

    计算光学成像是一个新兴多学科交叉领域。它以具体应用任务为准则,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式;
    的头像 发表于 11-17 17:10 870次阅读
    2023十大科技趋势之一:计算<b class='flag-5'>光学成像</b>

    计算光学成像如何突破传统光学成像极限

    传统光学成像建立在几何光学基础上,借鉴人眼视觉“所见即所得”的原理,而忽略了诸多光学高维信息。当前传统光学成像在硬件功能、成像性能方面接近物
    发表于 11-17 17:08 241次阅读
    计算<b class='flag-5'>光学成像</b>如何突破传统<b class='flag-5'>光学成像</b>极限

    软件定义超构光学元件未来发展方向

    软件定义的超构光学元件的快速发展有潜力推动计算成像技术的发展。研究人员讨论了三个应用领域:合成孔径成像技术、相位检索技术(例如傅立叶平面成像
    发表于 10-16 09:54 125次阅读
    软件定义超构<b class='flag-5'>光学</b><b class='flag-5'>元件</b>未来发展方向

    基于光学成像的物体三维重建技术研究

    随着计算机科学和数字成像技术的飞速发展,光学成像技术在许多领域中得到了广泛应用,其中之一便是物体三维重建。物体三维重建技术是一种通过计算机处理图像数据,获得物体三维信息的技术。光学成像技术作为物体
    的头像 发表于 09-15 09:29 517次阅读
    基于<b class='flag-5'>光学成像</b>的物体三维重建技术研究

    基于离轴成像光学系统的设计

              针对自由曲面能提升成像光学系统的性能和校正像差的特点,分析了自由曲面在离轴光学系统中的应用优势。光学系统选用视场角为30°×11°、焦距为150 mm、F数为3的C
    的头像 发表于 09-10 09:06 661次阅读
    基于离轴<b class='flag-5'>成像</b><b class='flag-5'>光学</b>系统的设计

    成像光学中的边缘光线原理是什么

    成像光学在上世纪的 60 年代就出现了, 1965年因为研究需要, Winston教授设计了复合抛物聚能器,这是一种新型光能收集器件。这一器件的问世象征着非成像
    的头像 发表于 08-29 11:00 768次阅读

    光学频段碳化硅极化激元超透镜为光学成像发展提供新思路

    》在线发表。 找到一双又一双“火眼金睛”,不断把微观世界看清楚,是许多科研人员的研究目标。基于极化激元和超构材料构筑的超透镜,此前已将光学成像分辨率提升至数百纳米水平,借此可直接观测微观物质,被广泛应用于生物医
    的头像 发表于 08-24 09:32 600次阅读

    折衍射混合成像光学系统设计

    摘要 :讨论了衍射光学元件的特殊成像性质;提出了带宽积分平均衍射效率的概念和应用;给出了作者在国内外完成的几个折衍射混合成像光学系统的应用实
    的头像 发表于 07-02 09:59 498次阅读
    折衍射混合<b class='flag-5'>成像</b><b class='flag-5'>光学</b>系统设计

    下周五|为超透镜设计而生:赋能光学革命,开启成像显示新未来

    原文标题:下周五|为超透镜设计而生:赋能光学革命,开启成像显示新未来 文章出处:【微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。
    的头像 发表于 05-19 22:35 333次阅读
    下周五|为超透镜设计而生:赋能<b class='flag-5'>光学</b>革命,<b class='flag-5'>开启</b><b class='flag-5'>成像</b>显示新未来

    为超透镜设计而生:赋能光学革命,开启成像显示新未来

    原文标题:为超透镜设计而生:赋能光学革命,开启成像显示新未来 文章出处:【微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。
    的头像 发表于 05-18 23:15 302次阅读
    为超透镜设计而生:赋能<b class='flag-5'>光学</b>革命,<b class='flag-5'>开启</b><b class='flag-5'>成像</b>显示新未来

    智能化驱使下,中图仪器光学3D成像测量技术的创新应用

    中图仪器影像测量仪、共聚焦显微镜、白光干涉仪基于3D光学成像测量非接触、操作简单、速度快等优点,能提供常规尺寸光学测量仪器、微观尺寸光学测量仪器、大尺寸光学测量仪器等精密测量解决方案!
    的头像 发表于 04-20 17:11 414次阅读
    智能化驱使下,中图仪器<b class='flag-5'>光学</b>3D<b class='flag-5'>成像</b>测量技术的创新应用