0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于热噪声的TRNG电路设计方法

SwM2_ChinaAET 来源:未知 作者:李倩 2018-08-21 09:48 次阅读

摘要:通过对热噪声模型和灵敏放大器匹配机理的研究,提出一种可自适应匹配的真随机数发生器(True Random Number Generator,TRNG)设计方案。该方案首先在灵敏放大器中嵌入可配置NMOS阵列,通过调整阵列的等效宽长比实现灵敏放大器工作电流的平衡;然后在输出端增设负载隔离单元实现互补输出负载的匹配,提高序列随机性;最后通过动态补偿算法实现TRNG自适应校准,提高其适用范围。电路采用TSMC 65 nm CMOS工艺实现,实验结果表明TRNG在0.8 V~1.4 V电压和-40 ℃~120 ℃的环境下能正常工作,最大输出速率可达1 GHz,平均能效为0.165 pJ/bit。输出的随机序列通过了NIST-SP 800-22测试。

0 引言

随着电子技术和通信技术的发展,对信息安全性的要求越来越高,真随机数发生器(True Random Number Generator,TRNG)已成为安全系统中不可或缺的一部分[1]。相较伪随机数发生器(Random Number Generator,RNG),TRNG的输出序列具有不可预测性且满足严格的统计测试要求,所以通常选取热噪声、核衰变、宇宙辐射等物理现象作为熵源[2],其中应用最广泛的是热噪声。热噪声由导体中载流子的热振动引起,它会造成沟道电流微小波动从而在电阻两端产生电压[3]。基于热噪声的TRNG电路设计方法主要包括:热噪声直接放大、环振抖动采样和亚稳态三种方法。热噪声直接放大法通过高增益高带宽差分运算放大器将大电阻上的热噪声直接放大,再由比较器将放大信号进行数模转换后输出。

但随着工艺的更新,放大器本身存在的输出失调、衬底噪声耦合、有限带宽等非理想因素都将明显影响系统输出的随机性[4];环振抖动采样是将热噪声转换为相位抖动,用低频信号采样获得随机输出[5]。但因为相位抖动幅度小,所以需要多个周期对相位幅度进行累加才能产生随机输出,导致电路吞吐率极低;亚稳态则是先让双稳态电路进入亚稳态区间,在释放瞬间由热噪声决定输出状态。

其优点是可以采用全数字化设计[3,6],但由于亚稳态工作区间小,因此微小的器件和负载失配都会使电路偏离亚稳态工作区间。为了使电路工作在亚稳态,文献[6]引入了负反馈调节,但由于未考虑负载失配的情况,反馈调节难度大,且状态机在启动时完成反馈调节后即停止工作,无法根据环境变化进行二次调节,降低了其应用范围。鉴此,本文将结合热噪声放大和亚稳态设计方法的优点提出相应的设计方案,有效提高输出序列的随机性,并通过仿真验证。

1 热噪声模型与灵敏放大器

影响TRNG输出序列随机性的关键是热噪声的有效放大,所以先分析热噪声模型和灵敏放大器工作机理。

1.1 热噪声模型

热噪声由导体中载流子的热振动引起,它使沟道电流产生微小波动,从而在在电阻两端产生波动电压。在频域中,其频谱密度如式(1)所示[7]:

其中,η(t,Δt)是呈高斯概率分布的随机数,每隔Δt更新一次,σ是噪声信号的幅值。可知热噪声频谱为一恒定常数,在时域中幅值呈高斯分布,是理想的熵源。但因幅值较小(实际电路中约为1.5 mV[3]),微小的工艺偏差和环境影响都会掩盖噪声的作用,因此需要精度高、匹配性好的放大器将其快速放大到数字电路能识别的电平值。

1.2 灵敏放大器

灵敏放大器具有灵敏度高、运行速度快、结构简单等优点,是放大热燥声的理想器件。其基本电路结构如图1所示。

时钟信号CLK=0时,电路进入预充电阶段,互补输出端Q和QN被预充电至高电平;当时钟信号CLK=1时,电路进入求值阶段,求值原理如式(3)所示:

若灵敏放大器工作电流完全平衡,互补输出Q和QN在求值阶段最终会稳定在中间电平。实际电路中,在热噪声的影响下,I1、I2大小会随机波动,从而在求值阶段产生随机输出。

2 自适应匹配

灵敏放大器工作电流平衡是获得理想随机序列的关键。但负载失配、工艺偏差等非理想因素都会影响电流大小,使输出序列产生明显的偏向性。因此,需要灵敏放大器在工作中能够自适应匹配。

2.1 可配置NMOS阵列

灵敏放大器中各MOS管宽长比的工艺偏差可等效为图1中晶体管N3和N4的偏差[4],造成工作电流失衡。为补偿工艺偏差,可将图1中的晶体管N3和N4替换为可配置NMOS阵列NF1和NF2,其内部结构如图2所示。

以ncf0为例,ncf0高电平时,晶体管开关N1导通,N2并联在N0两端,可配置NMOS阵列的等效宽长比升高,相应支路工作电流增大;反之电流减小,从而有效补偿工艺偏差提高序列随机性。

2.2 动态补偿算法

为使灵敏放大器可根据输出序列的偏向性调整可配置NMOS阵列来补偿偏差,提出动态补偿算法。算法采用单级等距调节,复杂性低易于实现。其状态转移图如图3所示。

有限状态机拥有动态配置和动态监控两种模式。TRNG在上电启动后经初始化进入动态配置模式。动态配置模式下每4个时钟周期,状态机对TRNG输出的4位数据进行一次读取检测。若4位数据中“1”的个数多于“0”,令flag=1。反之令flag=0。状态机根据flag的值令可配置NMOS阵列NF1、NF2自加或自减。当中“1”和“0”个数相等时,若输出为“1100”或“0011”,则令flag=2,配置状态维持不变。若输出为“1010”或“0101”,则判定TRNG在当前配置下,受热噪声影响可以等概率输出“1”或“0”,令flag=3,配置完成,状态机进入动态监控模式。动态监控模式下,若检测到输出序列连续出现12个“1”或“0”,判定输出序列失去随机性,令flag=4,状态机返回动态配置模式。否则,状态机维持在动态监控模式,可配置NMOS阵列配置不变。

2.3 TRNG电路整体结构

可自适应匹配的TRNG整体结构如图4所示。灵敏放大器在热噪声的影响下每个时钟周期随机输出低电平“0”或高电平“1”,输出数据存储在移位寄存器中。动态补偿模块根据移位寄存器中的数据偏向性调节可配置NMOS阵列,使电路工作在高熵值区域。负载匹配模块用以降低负载失配对输出序列随机性的影响。

3 实验结果和分析

整体电路采用CadenceVerilog/Spectre混合仿真器模拟电路和Verilog模块进行联合仿真。在1.2 V电源电压下,令时钟频率为1 GHz并手动引入10%的工艺偏差,输出序列如图5所示。可知当0 μs时,输出偏向1,经过约0.4 μs的动态配置,TRNG输出序列随机并进入动态监控模式。在1.5 μs时刻,再次引入工艺偏差,输出序列偏向1。TRNG重新进入动态配置模式,并在约1.92 μs完成动态配置进入动态监控模式。仿真结果表明电路实现自适应匹配功能,具有良好的抗工艺偏差特性。

将仿真获得的100 000位原始序列经过冯诺依曼后处理后得到约26 000位数据,分成10组,输入到NIST测试套件[8]中进行检测。测试结果如表1所示。从测试结果可以看出,各项P值都处在较高水平,随机性优异。

将所得序列输入到MATLAB测试自相关特性,结果如图6所示。由图可知,在95%的自信区间内2 000位连续数据间的自相关性近似为0。

为了验证电路的鲁棒性,TRNG在0.8 V~1.4 V电源电压,-40 ℃、40 ℃和120 ℃的环境下进行仿真,将输出序列送入NIST套件进行测试。测试结果如图7所示。P值大于0.1则通过随机测试。可知TRNG在各温度及电压下均有良好的随机性,且P值随着电源电压的升高呈上升趋势。

4 结论

本设计首先采用灵敏放大器代替高增益高带宽差分运算放大器,既避免运放设计的困难,同时又通过灵敏放大器中交叉耦合的正反馈结构提高TRNG吞吐率。其次,在输出端用D触发器进行负载隔离,降低灵敏放大器差分输出端负载失衡对输出序列随机性的影响,使得TRNG在工作阶段负载平衡。最后,提出具有动态配置和动态监控两种模式的补偿算法,使TRNG在工作环境剧烈变化时能自适应调节,增加输出序列的随机性和TRNG适用范围。所设计TRNG电路采用TSMC 65 nm CMOS 工艺实现,经NIST套件测试,具有较高的随机性,可广泛应用于密钥生成和信号加密等领域。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    142

    文章

    12416

    浏览量

    209979
  • 电路
    +关注

    关注

    170

    文章

    5480

    浏览量

    169511
  • 通信技术
    +关注

    关注

    20

    文章

    1055

    浏览量

    91574

原文标题:【学术论文】基于热噪声的自适应匹配真随机数发生器设计

文章出处:【微信号:ChinaAET,微信公众号:电子技术应用ChinaAET】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    multisim的热噪声源问题

    multisim中热噪声源的noise ratio设置有什么意义
    发表于 03-25 17:12

    热噪声可以变废为宝吗

    作者:Mike Beckman德州仪器 模拟设计中的热噪声几乎总属于寄生特性,需要不惜一切代价加以避免。输入滤波、PCB 板面布局和接地连接都是良好模拟系统中最重要的因素,但用户总能在模拟系统中找到
    发表于 09-19 15:04

    ADS中的热噪声源怎么设计

    嗨,我正在设计一个微波辐射计,我想在ADS中设计一个热噪声源模型作为辐射计系统的输入源。辐射计用于检测组织内的温度,为了模拟ADS中的辐射计,我需要设计一个代表这个温度的热噪声源....所以,我需要
    发表于 10-08 14:34

    请问热噪声如何处理

    我现在处理一个传感器,传感器内部是一个热电阻,工作温度80-150°C,阻值240欧。运放需要对传感器输出电压进行放大。目前我遇到一个很难处理的问题。由于电阻温度高,具有很大的热噪声。而我的采样需要
    发表于 03-07 13:13

    怎么解决bandgap中晶体管的热噪声问题?

    bandgap中晶体管的热噪声比较大,通过什么手段能解决?
    发表于 06-24 07:29

    如何处理热噪声

    我现在处理一个传感器,传感器内部是一个热电阻,工作温度80-150°C,阻值240欧。运放需要对传感器输出电压进行放大。 目前我遇到一个很难处理的问题。由于电阻温度高,具有很大的热噪声。而我的采样
    发表于 11-24 07:50

    心电图应用中的热噪声分析

    本文讨论了基于ADS1298和ADS1298R多通道、同时采样、24位、Δ∑(Δ∑)模数转换器(ADC)的心电(ECG)应用的热噪声源。
    发表于 05-22 10:53 17次下载
    心电图应用中的<b class='flag-5'>热噪声</b>分析

    热噪声计算器教程

    热噪声计算器 (TNC) 是为 HP 50g 计算器编写的程序,有助于分析电阻器和其他噪声源中的热噪声。TNC发现任何器件产生的噪声电压,如果其白
    的头像 发表于 01-10 14:55 1218次阅读
    <b class='flag-5'>热噪声</b>计算器教程

    电阻热噪声的主要来源

    电阻的热噪声主要来源于导体中电子的随机运动,因此热噪声的谱密度与绝对温度成正比。
    的头像 发表于 05-15 11:45 636次阅读
    电阻<b class='flag-5'>热噪声</b>的主要来源

    详解电阻的热噪声

    电阻的热噪声主要来源于导体中电子的随机运动,因此热噪声的谱密度与绝对温度成正比。
    的头像 发表于 05-15 11:46 4152次阅读
    详解电阻的<b class='flag-5'>热噪声</b>

    为什么电容不产生热噪声

    为什么电容不产生热噪声?  电容是一种被广泛应用的电子元件。它主要由两个导体板(也称为极板)和一层介电材料构成,可以存储电能、隔离电信号、调节电路等。但与电阻、电感等元件不同的是,电容不会产生热噪声
    的头像 发表于 09-20 16:43 769次阅读

    电阻的热噪声计算方法

    我们所说的电阻噪声通常指的电阻的热噪声,就算这个电阻两端没有连接到电路中,没有电流流过电阻,电阻两端也会有电压变化,虽然这个电压变化非常小,但是确实是真实存在的,这个电压波动就是电阻热噪声
    的头像 发表于 10-23 16:47 2743次阅读
    电阻的<b class='flag-5'>热噪声</b>计算<b class='flag-5'>方法</b>

    PD放大电路主要的噪声源是哪些?如何降低PD放大电路噪声

    噪声,其谱密度随频率的增加而下降。 降低PD放大电路噪声方法可以从以下几个方面考虑: 1. 降低温度:由于热噪声与温度有关,因此降低
    的头像 发表于 11-06 11:14 404次阅读

    浅析电阻器的热噪声与过剩噪声

    电阻器的固有噪声,是指其自身产生的噪声,包括热噪声和过剩噪声
    的头像 发表于 01-26 09:47 491次阅读
    浅析电阻器的<b class='flag-5'>热噪声</b>与过剩<b class='flag-5'>噪声</b>

    电阻热噪声是怎么来的呢?电阻热噪声有何特性?

    电阻热噪声是怎么来的呢?电阻热噪声有何特性? 电阻热噪声是由于电子系统中存在的热运动而产生的一种噪声现象。根据统计物理学原理,温度高于绝对零度的物体内的粒子将会发生热运动,这种运动的不
    的头像 发表于 03-28 15:36 206次阅读