0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科技王凡:如何保证自主泊车的安全

佐思汽车研究 来源:未知 作者:工程师李察 2018-08-18 10:12 次阅读

2018自主泊车与代客泊车论坛在北京御汤山商务会所召开。上海纵目科技智能交通事业部的总经理王凡在会上做了《如何保证自主泊车的安全》的主题演讲。

王凡:大家好!我是纵目科技智能交通事业部的王凡。今天给大家分享我们在自主泊车安全方面的思考。

纵目科技有三个关键词,第一个关键词是零部件及核心算法一级供应商;第二个关键词是专注泊车系列产品,从L2的自动泊车到L4的自主泊车;第三个关键词是人工智能深度学习,车+AI。我们有一流的视觉算法,比如刚刚在KITTI上获得的单项第一,同时我们善于把一流的算法应用到我们具体落地的场景中去。

我们为什么要专门来讲安全这个话题?大家都知道智能驾驶汽车最终是要在公共道路上行驶,如果一旦出现了问题,就会伤害到老百姓,把自动驾驶汽车的安全做好,是我们不可推卸的责任。另外,智能驾驶汽车是这几年新兴的事物,老百姓都认为它是黑科技,高大上,如果频繁出事故,大家会不相信这个行业。

对于自主泊车,有哪些挑战的场景?下图左边这个车没有司机,如果自动驾驶系统一旦出现了危险情况,没有任何一个人可以接管这台车。

下图右边是我们国家停车场的情况,非常拥挤,停车场里有很多人,可能车位不够,很多车还停在路边,或临时占用一些道路,路边还有一些货物。这都是停车场复杂情况的挑战,对我们的安全来说更是挑战。

风险到底是从什么地方来的?只要有软件、有硬件电子信息系统,就有可能发生失效,会导致风险。那么这个风险有可能是一个系统失效,也可能是随机失效。ASIL-D的安全目标被违反的概率是10的负8次方,如果我们去测试的话,每出一个产品需要测试1亿个小时,然后出了新版本,还要测试一亿个小时。所以仅仅通过测试来验证产品是不现实的。

我们的目标是要降低风险,对于电子电器的系统来讲,可能出现的是元器件故障风险,就是橙色的区域,风险非常高,我们要把它的风险进一步降低。我们之前在做功能安全,积累了大量的经验,比如说过程改进、FMEA分析等,可以把质量提高到风险可控程度。但这还是不够的,我们需要进一步提升它的质量,降低它的风险,我们有一整套完善的流程和方法来做这件事。

我们要做一个危害分析和风险评估,要结合需求和系统的设计,它的工况环境,对每一条危害进行分析,分析它的严重度、可控度,我们可以查到每条危害的安全是什么等级。

我们总结出这样一张表格,这是我们对于自主泊车总结出的功能安全目标中的一部分。大家可以看到,这里列出了5个功能安全目标。

我们经常会说,自动驾驶功能,比如高速需要达到ASIL-B或者ASIL-D,这种说法不严谨,严谨的说法是,有哪些具体的功能安全目标需要达到ASIL-B或者ASIL-D。从这里还可以看到,有两条是ASIL-D级别的功能安全目标,希望自主泊车的控制器达到ASIL-B的水准。这样的话,需要整车其他系统来分担它的功能安全。

当我们有了这个功能安全目标之后,我就要进行系统安全分析,有很多具体的方法论,我可以采用功能安全规范推荐的方法论,帮助我们得到系统的技术需求,比如这里我们针对一项功能安全目标结合产品的系统架构设计进行FTA故障树分析,分析总共有哪些失效可以导致违反功能安全目标,然后针对这些失效,设计出相应的安全机制来保证系统的安全性。这个例子还很high level,具体工作中的分析远比这个要详细很多。FTA是一种演绎法,ISO26262还要求进行软硬件的FMEA分析,这是归纳法。相当于一个是自顶向下,一个是自底向上,拉网式地排查。

硬件的每一个元器件都有一定失效的概率,电阻电容可能发生断路或者断路,IC也有可能发生异常,我们要计算出整个系统总体随机失效概率,所以我们要对硬件做FMEDA定量分析,对每一个元器件失效进行分类和计算,我们还要计算单点故障度以及浅层失效故障度,对将其控制在功能安全相应ASIL等级允许的范围之内。

从软件的角度来说,主要从架构设计的角度去消除风险,检测失效。比较典型的方式就是三层监控。在功能层进行日常的采集,然后实现功能监控层,对监控层再去监控,看看功能层是不是按照我的想法执行;最后还有控制器监控层,检查刚才运行的整套系统,看它是不是在正常的工作状态。

这样三层监控系统下来之后,保证我们的系统很安全。

由此,我们得到自动泊车功能安全设计,该设计最重要的点就是冗余。因为它会失效,所以需要通过两种方式进行备份。比如说我们的计算平台,可以有很多传感器做备份,把定位源进行冗余。

整车电源需要双备份,我们也有两路独立的电源输入,其中一路电源消失之后,每个系统还可以保持工作。

转向和制动,整车的电器架构和关键的器件之间,要保持至少两路的通讯网络。多种传传感器冗余,确保车周围物体检测和追踪。有4个环视摄像头、1个前视摄像头,12个超声波,4个毫米波角雷达,1个毫米波前雷达。至少有4个传感器可以覆盖车辆前进的主要方向。

除了上述方法,我们还需要通过流程管理的方式确保系统的质量。根据ISO26262流程要求,我们从系统层面、应用层面、软件层面引入到实践中。

现在用比较形象一点的例子来理解功能安全到底是什么样子。

假设周六在幼儿园里,幼儿园的老师想为了下周一的活动准备一些教具,对教室进行装饰。大家都很忙碌,在这个过程中有两盒针都打翻了。我们分析大头针会对小朋友造成的影响。

有的小朋友不太理解大头针,可能就会好奇,有可能刺伤自己的眼睛,或者吞咽下去,最高等级的就是S3。暴露度最高是E4。可控度就是说捡到这个大头针会怎么样,一部分小朋友进行过这些教育,他见过这个东西,但也存在一些小朋友不知道,拿那个玩具去玩,我们认为可信度是C2。综合风险等级是ASIL-C级的。

老师首先会想,那天我去过哪些教室,我就去哪些地方找大头针,这是利用现有经验改善安全的方式。这样可以找出大部分大头针,但是还是不够的,我们认为在某些角落里可能有遗漏,我们会通过拉网式的方法,计算这个房间有多少走廊,有多少区域,然后画成1×1米的格子,看看每个格子上是否有大头针。把它都检查过了,没有大头针,这种拉网式的排除相当于系统分析方法。

即便如此,老师可能还不太放心,万一出了事都是大事。老师做了一种大头针检测器,然后周一发给每个小朋友,一旦这个东西报警,你马上举手报告给老师,这相当于是我们的监控方式。这个检测器是否可靠?所以我们又在检测器上实施了监控装置,这就相当于是我们的三层监控。整个过程相当于是我们在幼儿园里做了一次功能安全项目。

对于自动驾驶来说,这个是否就足够了呢?可能很多人会有印象,特斯拉发生人身事故的场景,特斯拉以为白色的是天空,它就直接撞上去了。当时有没有软件发生异常?没有。有没有在当场发生随机失效?好像也没有。发生这个事故的原因是算法没有检测出这辆车,这不是功能安全可以解决的问题,即便特斯拉的功能目标能做到ASIL-D也不能解决这个问题。

目前有一个新的规范正在制定,但还未发布,可能在今年或者明年会发布ISO21448,全称是预期功能安全,是专门针对自动驾驶中的算法性能进行分析的规范。在21448里提到,要跟26262做一些参照,在今年新版的26262里面,结合了21448的场景。

我们将所有的场景分为已知安全、未知安全、已知不安全、未知不安全。我们的目的是最大化已知安全的部分。减小未知不安全的做法是要增加测试的覆盖率,尽可能多的分析系统面临的场景,然后增加测试的方式,把中间这个轴向右推,尽量减少未知部分。世界上最好的视觉算法在行人检测的准确率智能能达到90%。需要增加传感器的融合等方式,来证明已知不安全基本被消灭。通过这样的方法,可以证明我们的系统是安全的。

很多人都知道马斯洛提出的人类需求三角形,最低的需求是生理需求,然后是安全需求、社交需求、尊重需求和自我实现需求。对于一个司机来说,也有不同层次的需求。对于一个司机来说,最底层的需求相当于是新生儿一样,身体健康,能够呼吸,眼睛能看,不会莫名其妙晕倒,这是最根本的需求。再往上是新生儿到8岁的时候,他认识物体,知道什么是汽车、什么是行人,什么是消防车,什么是道路,他有自己的运动器官,四肢运动也协调了,我们认为这是司机的第二个阶段。

第三个阶段就是小孩子到了18岁的时候,他去驾校学开车,很快就掌握了开车的技能,在教练陪伴下可以上路了,最终学习了理论课程,通过了所有驾校的考试,拿到了驾照,这是司机的需求三角形。

对比一下自动驾驶安全,ISO26262相当于是最低层次的需求,SOTIF是认知系统已经建立起来了,可以有基本功能的边界条件,但这时候还不能开车。

人在开车的时候,要识别道路上其他的车,其他的交通参与者,他们其实也会看见你,你的行为也会影响到他们的决策,反过来对于自动驾驶来说也一样,你做出来的每个决策,你的行为也会影响到其他的交通参与者。其他的参与者会因为你的反映会有一些不同反馈。

比如在停车场里有很多行人穿过停车场的道路,自动驾驶的车看到行人在横穿,车子就停下了,行人看到车停下来之后,他也不知道车会不会走,他也停下来了。如果人开车,我们会做一个礼貌让行的手势,行人知道车的目的,他就会通过。但对于自动驾驶来说,行人拿不准这个车是否会走,所以会有交通参与者之间交互的问题。

还有一些问题,人开车的时候,即便是很熟的规则,注重安全的司机也会犯错误。这样我们不能太苛责自动驾驶汽车不出现任何的事故。

比如在下图的黑色场景下,绿色的车是我的,前面、后边、左边都有车,我在停车场里开,黄色的车要出库,撞到了我的侧面,这不是我的责任,需要黄色的车承担主要责任。责任判定是说不能指望我们的车完全不涉入到事故,但我们不引起事故。

美国公路安全管理局发布了专门针对L3到L5自动驾驶的建议指导书,包含上面提到的这些系统安全,ODD就是产品的边界条件,指出这个功能到底在什么样的道路条件下行驶,在什么样的车速、环境、天气的公共安全下行驶。OEDR是说在这个环境下有什么能力,能够识别什么样的物体,是否能够检测出行人,如果遇到这种情况时,决策是什么,用于定义行为。

Fallback是说一旦发生了事故,要进行功能回落。我们刚才说自主泊车的车上没人,所以自动泊车的定义是安全停车、通知,还有验证手段。除了一般的车出厂一定要做的实验,还要去测试可能导致危险的场景,所有的功能是否都可以用。

另外还有HMI,对L3来说,需要告知司机和车的状态,是否健康。待接管的时候,可以通过HMI提示司机,然后还要检查这个司机是否确实接管了。对于自主泊车系统,它可能是代表车外面,也有可能是后台的运行中心。比如联系不到车主,它会请示运行中心。

Crashworthiness是说车碰撞时的保护。对载人的无人车来说,不要让乘客受伤。

Post-Crash是说紧急停车,确保安全。Data Recording是说持续改进系统,如果出事以后,可以通过记录的数据重现事故发生的情景。Consumer Education and Training不仅要让内部人员会用,还得教会司机上手。最后还有法律法规等。

完成了这12要素之后,我们就认为无人驾驶汽车具备了上路能力,这就是自动驾驶安全的马斯洛三角形。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    26410

    浏览量

    264018
  • 人工智能
    +关注

    关注

    1776

    文章

    43796

    浏览量

    230570
  • 深度学习
    +关注

    关注

    73

    文章

    5235

    浏览量

    119893

原文标题:纵目科技王凡:如何保证自主泊车的安全

文章出处:【微信号:zuosiqiche,微信公众号:佐思汽车研究】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    请问NFC数据传输如何保证数据安全

    NFC数据传输如何保证数据安全
    发表于 04-07 06:18

    极氪007公测启动,量产机械车位自动泊车业内首创

    极氪007固体系统6.1版带来了五项先进的智能泊车功能,包括车位识别、复杂停车位泊入、泊车效率提升以及无划线区泊车等多个棘手问题都得到了解决。
    的头像 发表于 03-27 14:32 108次阅读

    特斯拉全新自动泊车功能上线,可平行泊车

     据Not a Tesla App报道,此次2024年2月11日的软件更新新增内容包括自动泊车以及平行泊车等功能。在行车时,车辆屏幕将标示出可用车位,并以红色P标记做特殊提示;同时,驾驶员亦有权自行选择其它高亮显示的车位。
    的头像 发表于 03-22 11:16 183次阅读

    自动泊车和遥控泊车的区别

    随着科技的快速发展,汽车行业也在不断的创新与进步。自动驾驶技术是其中的一个重要方向,而自动泊车和遥控泊车作为自动驾驶的子技术之一,受到了广大车主和消费者的关注。然而,这两种泊车技术看似很相似,实则
    的头像 发表于 01-31 13:43 550次阅读

    智驾、座舱、泊车三合一域控制器解析

    用双Orin打造智驾、座舱、泊车三合一域控制器,硬件上难度不大,难度都在软件上。今天我们就来看看国内某大厂的智驾、座舱、泊车三合一域控制器。
    的头像 发表于 01-29 10:37 542次阅读
    智驾、座舱、<b class='flag-5'>泊车</b>三合一域控制器解析

    泊车一体化HMI体验设计升级

    HAVP在车机端使用,用户在同一个停车场记忆多条路线,再次进入停车场匹配上路线后自主巡航泊车。但1.0版本定位是低成本入门级产品,所依托的硬件平台算力较低,导致实时感知元素少且稳定性差,可记忆路线长度短,巡航速度低。整体产品无论是驾驶体感、还是人机交互体验,均不太理想。
    的头像 发表于 01-09 17:20 562次阅读
    <b class='flag-5'>泊车</b>一体化HMI体验设计升级

    告别停车烦恼:自动泊车技术引领新时代

    随着科技的不断发展,自动驾驶技术已经成为汽车行业的一个重要研究方向。其中,自动泊车技术作为自动驾驶技术的一个重要应用场景,受到了广泛关注。自动泊车技术能够减轻驾驶员的停车压力,提高停车的准确性和安全性,为人们的出行带来极大的便利
    的头像 发表于 01-05 10:02 150次阅读
    告别停车烦恼:自动<b class='flag-5'>泊车</b>技术引领新时代

    低功耗毫米波雷达在泊车辅助应用中优于超声波的原因

    当今的泊车系统主要使用了超声波传感器,这是一种可以感应附近物体的低成本解决方案。尽管这种技术已发展成熟,但是原始设备制造商 (OEM) 必须满足成本敏感市场中泊车辅助和自主泊车应用不断
    的头像 发表于 11-22 14:45 255次阅读
    低功耗毫米波雷达在<b class='flag-5'>泊车</b>辅助应用中优于超声波的原因

    Tbox如何做防护来保证数据安全

    Tbox如何做防护来保证数据安全呢?
    发表于 10-16 06:48

    智能泊车系统感知网络的基本处理机制原理

    本系列文章将分上下两篇分别对泊车感知处理网络原理进行阐述侧重于检测安全驾驶的基本场景信息:物体检测、路缘检测、自由驾驶区域分割、物体与相机的距离和物体方向。
    发表于 10-09 14:47 188次阅读
    智能<b class='flag-5'>泊车</b>系统感知网络的基本处理机制原理

    用于自动泊车的超声波泊车传感器

    用于自动泊车的超声波泊车传感器
    的头像 发表于 08-23 10:52 915次阅读
    用于自动<b class='flag-5'>泊车</b>的超声波<b class='flag-5'>泊车</b>传感器

    如何保证我们的数据安全

    的解决方案。但事实上,数据加密对于向你的领导团队、你的客户、你的投资者和其他有价值的利益相关者保证你将安全放在首位,以及你的组织已经采取了符合行业最佳实践的措施来防止数据泄露、泄漏或错
    的头像 发表于 07-31 17:41 788次阅读
    如何<b class='flag-5'>保证</b>我们的数据<b class='flag-5'>安全</b>

    助力采用MCU的自主系统实现自主安全

    人工智能(AI)和机器学习(ML)技术在自主性日益增强的系统中的应用越来越普遍,这将提高各行各业对更智能的安全系统的要求。
    的头像 发表于 07-08 11:11 307次阅读
    助力采用MCU的<b class='flag-5'>自主</b>系统实现<b class='flag-5'>自主</b><b class='flag-5'>安全</b>性

    RISC-V如何保证高权限模式程序及外设的安全性?

    RISC-V有机器模式、监管模式和用户模块,但无论在哪个模式下当TRAP发生时都会转到机器模式,是不是也就意味着在用户模式下进入中断服务程序也会拥有机器模式的权限,那我们如何保证高权限模式程序及外设的安全性?
    发表于 05-26 08:11

    泊车雷达原理是什么?

    泊车雷达系统的智能技术不能超越物理定律规定的极限,只能在系统极限范围内工作。切勿因为泊车雷达系统提高了舒适性而冒险行驶。泊车雷达系统不能代替驾驶员的注意力。
    的头像 发表于 05-17 16:38 920次阅读