0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为什么使用24位转换器通常是更好的方案

电子设计 来源:互联网 作者:佚名 2018-08-08 09:19 次阅读

在涉及到温度测量、压力测量、工业流程控制的便携式医疗设备和工业自动化领域,12 位转换器足以成为我们理想的选择。但是,如果考虑到整个多传感器系统设计,那么 24 位转换器可能是更加经济高效的选择,本文将解释其中的原因。

开始进行系统设计时,设计人员通常着手开发 12 位系统,首先从 12 位转换器开始,然后开发前端模拟链。但是,由于前端电路涉及到多个放大器,因而会增加设计时间、空间和复杂性,最终提高整体成本。

我们可以采用更好的方法。本文简要讨论了如何使用 8 通道 24 位转换器来取代所有 12 位信号链。我们将使用Analog Devices的AD7124-8BCPZ-RL78 通道、低噪声、低功耗模数转换器 (ADC) 作为示例。

典型 12 位多传感器设计

在开发便携式感应系统时,设计人员首先确定他们需要 12 位、14 位还是 16 位系统,然后着手开发该系统。设计工作从前端模拟链和相应的逐次逼近寄存器 (SAR) ADC 开始。

我们可能发现一些系统集成了多个传感器,这是非常合理的现象。患者监护仪就是很好的例子,它用于收集温度、体重、血氧和语言能力状态(图 1)。

带有录音器的患者监护仪的框图

图 1: 带有录音器的患者监护仪是多传感器系统的很好例子。(图片来源:Digi-Key Electronics)

常见的 12 位感应系统执行高压侧或低压侧系统电流测量。在此类系统中,我们使用低阻值电阻器 (RSHUNT),通过将电流转换为电压来感应系统电流(图 2)。该图显示了标准高压侧电流感应电路,该电路使用 SAR-ADC,最终将系统的电流转换为可用的数字值。

典型 12 位高压侧电流感应电路的框图

图 2: 典型 12 位高压侧电流感应电路显示了 SAR-ADC,它将 RSHUNT感应的电流转换为可用的数字值。(图片来源:Digi-Key Electronics)

在图 2 中,低阻值分流电阻器与仪表放大器 (InAmp) 连接,该放大器能够感应接近电源电压值的电压。InAmp 的输出在 0 至 100 毫伏 (mV) 范围内。对于 12 位系统,此处的最低有效位 (LSB) 大小为 24.4 毫伏 (mV)。然后,两个放大器为此信号提供增益,二者均为 -10 V/V。在电路中的这个位置,信号的输出范围为 0 至 10 伏特。随后,信号进入全差分放大器 (FDA)。该放大器适当地为 SAR-ADC 差分输入引脚提供差分输出,LSB 大小为 1.22 mV。

下面的成本分析将使用 1000 件价格估算。回到图 2 中的前端,InAmp 器件是一种专业器件,因为它能够精确地感应电源附近的小输入信号。这部分电路的弊端是 RSHUNT必须尽可能低,试图让负载的电源尽可能保持恒定。对于这种类型的专业器件,成本估算为大约 3 美元。

在 InAmp 后面,还有两个运算放大器 (OpAmp)。两个运算放大器都是双配置的一部分。这些放大器必须具有较低的输入偏置电流、补偿电压和噪声。当信号进入 SAR-ADC 时,输入偏置电流和补偿电压将增加失调误差。高放大器噪声将影响信号链的信噪比 (SNR)。对于这种类型的双放大器,成本估算为大约 2 美元。

FDA 接收运算放大器的输出信号。FDA 的功能是将单端信号变成差分输出,将满量程范围乘以 0.4 V/V,让电平位移达到 2.5 伏特。对于 FDA,成本估算为大约 2 美元。

最后,SAR-ADC 接收 FDA 的差分信号。此应用电路测量流经负载的电流。该高压侧电流传感器电路要求不超过 12 位的转换结果粒度。在图 2 中,12 位 SAR-ADC 的典型成本为大约 5 美元。

图 2 中的前端电路涉及多个芯片,包括四个放大器,因而会增加设计时间、空间和复杂度,最终还会增加成本。在本例中,前端成本为大约 7 美元。

这个过程可在多个感应电路上执行,但本例将使用 Analog Devices 提供的 24 位三角积分 (∑∆) 转换器。

使用 24 位转换器取代 12 位转换器

我们可以采用更好的方法来实现图 2 所示的电路。SAR-ADC 功能需要信号调节电路、模拟多路复用器和放大器驱动器。替代方法是将转换器更换为 ∑∆-ADC(图 3)。

感应电路方框图的图片

图 3: 感应电路方框图:顶部框图使用 SAR-ADC 作为转换器。底部框图使用 ∑-ADC 作为转换器。(图片来源:Digi-Key Electronics)

图 3 显示了 SAR-ADC 和 ∑∆-ADC 信号路径之间的基本差异。SAR-ADC 信号路径需要信号调节,为小传感器信号做好准备,以满足转换器的输入范围。∑∆-ADC 信号路径中的传感器连接是直接连接到转换器的输入。

使用 ∑∆-ADC 信号链,设计人员可以忘记模拟增益级,消除电平位移电路。该电路仍将继续使用 InAmp,因为它提供了针对过压事件的保护功能,但其他所有放大器都是不必要的(图 4)。

使用 ∑∆-ADC 的高压侧电流感测的框图

图 4: 使用 ∑∆-ADC 的高压侧电流感测,显示已更换的元件。(图片来源:Digi-Key Electronics)

对于以上系统,最令人关注的是 LSB 大小为 24.4 mV。出于精确度的原因,我们可将 LSB 大小除以二,结果为 12.2 mV。5 V 系统所需的位数的计算方式很简单:1.44*ln(满量程范围/LSB)。对于本电路,位数为 18.6,四舍五入为 19 位。

再强调一次,在这个成本分析中,我们使用了 1000 件价格估算。回到图 4 的前端,我们仍将使用 InAmp 器件。对于这种类型的专业器件,典型成本仍为大约 3 美元。

在 InAmp 后面,无需再使用两个放大器。这样可以节省大约 2 美元。由于 ∑∆-ADC 可通过数字方式执行电平位移功能,因此也不再需要 FDA。这样又可以节省大约 2 美元。

最后,SAR-ADC 接收 FDA 的差分信号。此应用电路测量流经负载的电流。该高压侧电流传感器电路要求不超过 12 位的转换结果粒度。再次参考图 2,24 位 ∑∆-ADC 的典型成本为大约 5.30 美元。

在图 4 中,我们不再需要前端电路,这样就降低了电路复杂性和成本。此电路中唯一剩余的模拟器件是 InAmp。在本例中,前端成本为大约 3 美元。

∑∆-ADC 的全面功能

此信号已进入 24 位系统,没有增益。在这个 24 位系统中,LSB 大小相当于 12 位系统具有 4098 的增益(图 5)。

相当于具有 4098 的增益的 LSB 大小的框图

图 5: 在这个 24 位系统中,LSB 大小相当于 12 位系统具有 4098 的增益。(图片来源: Digi-Key Electronics)

虽然特定传感器的 ∑∆-ADC 的输入范围很小,但转换器能够为所有传感器产生 12 位的分辨率,而且没有信号调节阶段。

现在我们通过实例描述这种方法。一旦找到满量程范围为 5 V 的 24 位 ∑∆-ADC,设计人员将有机会不再使用一些信号链元件。如果进一步采用这种方法,他们可以使用带有内部可编程增益放大器 (PGA) 的 ∑∆-ADC,允许在 ∑∆-ADC 内部添加模拟信号链元件(图 6)。

Analog Devices 的 AD7124-8 24 位 ∑∆-ADC 的框图,带有 4/16 个输入引脚(单击放大)。

图 6: AD7124-8 24 位 ∑∆-ADC,带有 4/16 个输入引脚。(图片来源:Analog Devices)

八个差分输入的 AD7124-8 24 位 ∑∆-ADC 是一种低噪声解决方案,包含可编程增益(1 至 128)、内部电压基准和内部时钟振荡器。该器件非常适合消除图 2 所示的繁杂模拟信号调节电路。

总结

本文简要论述了为什么使用 24 位转换器来替代多个 12 位器件通常是更好的方案,以及如何降低多传感器器件的模拟前端的成本和复杂性。

我们使用 Analog Devices 的 AD7124-8BCPZ-RL7 8 通道、低噪声、低功耗 ∑∆ ADC 作为示例。有了该器件,我们不再需要 PGA 和电压基准。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2521

    文章

    47962

    浏览量

    739614
  • ADC器件
    +关注

    关注

    0

    文章

    9

    浏览量

    8262
  • LSB
    LSB
    +关注

    关注

    0

    文章

    37

    浏览量

    13177
收藏 人收藏

    评论

    相关推荐

    同步整流降压转换器电流路径介绍

    同步整流降压转换器是一种使用开关器件和同步整流管来实现高效能量转换的DC-DC转换器。了解同步整流降压转换器工作时的电流路径对于优化设计和故障分析至关重要。 开关导通:当主开关(
    的头像 发表于 02-26 10:40 199次阅读

    LLC转换器结构介绍

    ,Lr为谐振电感,Lm为变压器的激磁电感,Cr为谐振电容。这个网络决定了转换器的谐振频率,并在转换器操作中起到关键作用。 开关器件 开关器件通常是MOSFET或IGBT,用于根据控制信号切换电流路径,从而控制能量从输入源传递到负
    的头像 发表于 02-23 17:44 343次阅读
    LLC<b class='flag-5'>转换器</b>结构介绍

    MS1242,替代ADS1242,24bit 高精度、低功耗模数转换器

    。 MS1242/MS1243 可以广泛使用在工 业控制、称重、液体 / 气体化学分析、血液分析、智能发送 、便携式测量仪器等领域。 主要特点  24 无失码、 21 有效精
    发表于 02-19 16:22

    dcdc降压转换器工作原理

    通常是电感和电容)来控制并转换电压。以下是对降压DC/DC转换器工作方式的详细说明。 降压或降压转换器在电源管理电路中扮演着重要的角色,其主要职责是将标准的系统级电压(如12伏特或2
    的头像 发表于 02-16 09:37 414次阅读
    dcdc降压<b class='flag-5'>转换器</b>工作原理

    选用AD7190转换器做数据采集仪表,在仪表附近用对讲机通话时数据就跳动很大的原因?

    我选用AD7190转换器做数据采集仪表,平时采集的数据显示很稳定,但当在仪表附近用对讲机通话时数据就跳动很大,闹不明白是哪里出了问题,烦请各位赐教!
    发表于 12-21 06:23

    ADAS3022回读的前16转换结果不对是什么原因导致的?

    下降沿后,开始回读转换结果,采用32个时钟脉冲读取方法,目前情况是这样,回读的后16配制字正确,正是之前写入的配制字,但是回读的前16转换结果不对,而且将时序稍作调整,比如说调整c
    发表于 12-14 07:38

    使用AD4696转换器,在有源滤波之后是否还需要增加运放驱动?

    举例说明:使用AD4696转换器,推荐使用ADA4805-1作为输入驱动。 但是如果待测信号先经过使用ADA4805-1构建的有源滤波,那么是否还需要在ADC输入端前增加ADA4805-1作为输入驱动呢? 如下图,方式①固然没有问题,但是使用方式②可不可以呢?
    发表于 11-30 06:22

    Buck转换器如何工作

    电路Buck转换器
    油泼辣子
    发布于 :2023年11月18日 11:51:37

    A/D转换器的作用是什么?

    A/D转换器(模数转换器)的作用是将模拟信号转换为数字信号。在现代电子设备中,模拟信号通常是来自传感器、麦克风、摄像头等外部设备的信号,而数字信号则更易于处理、存储和传输。因此,A/D
    的头像 发表于 11-16 15:54 726次阅读

    连接器通常是EMI问题

    在减少EMI问题时,大多数同轴电缆表现相同。它们都是普通电流的良好天线,可以辐射并通过FCC认证类型测试。电缆不是EMC测试失败的主要来源,通常是连接器。 如果有任何净电流或常见电流一根电缆,通过
    的头像 发表于 11-10 14:58 158次阅读

    负载对电源转换器的要求

    电源转换器到底做得好不好,要看它是否能满足负载端的需求。实际应用中,负载端通常是另外一个电源转换器或是某个功能芯片的主电源轨或偏置电源轨。
    发表于 11-08 12:31 131次阅读
    负载对电源<b class='flag-5'>转换器</b>的要求

    USB485转换器RS485USB通讯串口线工业级DAM-3232N 阿尔泰科技#电子元器件

    电子元器件转换器usb
    aet011
    发布于 :2023年10月26日 15:20:32

    四轴的姿态进行采样用通常是用什么滤波算法进行滤波的?

    四轴的姿态进行采样用通常是用什么滤波算法进行滤波的
    发表于 10-09 06:42

    STM32L4 sigma delta数字滤波模块(DFSDM)介绍

    市场上的外部∑∆调制:–这是外部独立设备:基于西格玛-德尔塔原理的ADC转换器–模拟输入(通常是差分)和数字输出 •精度:约16分辨率–提供数字输出作为快速的1
    发表于 09-12 06:06

    怎么使用CANbus至RS232转换器进行消防设备远距离通讯改造?

    我想使用CANbus至RS232转换器进行消防设备远距离通讯改造,请问可以实现吗?
    发表于 05-09 10:56