0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5G如果要实现端到端的高速率,重点是突破无线这部分的瓶颈

h1654155971.7596 来源:未知 作者:李倩 2018-07-27 12:38 次阅读

一个简单且神奇的公式

今天的故事,从一个公式开始讲起。

这是一个既简单又神奇的公式。说它简单,是因为它一共只有3个字母。而说它神奇,是因为这个公式蕴含了博大精深的通信技术奥秘,这个星球上有无数的人都在为之魂牵梦绕。

这个公式,就是它——

我相信很多同学都认出这个公式了,如果没认出来,而且你又是一个理科生的话,请记得有空多给你的中学物理老师打打电话!

小枣君解释一下,上面这个公式,这是物理学的基本公式,光速=波长×频率。

对于这个公式,可以这么说:无论是1G、2G、3G,还是4G5G,万变不离其宗,全部都是在它身上做文章,没有跳出它的“五指山”。

且听我慢慢道来。。。

有线?无线?

通信技术,无论什么黑科技白科技,归根到底,就分为两种——有线通信和无线通信

我和你打电话,信息数据要么在空中传播(看不见、摸不着),要么在实物上传播(看得见、摸得着)。

如果是在实体物质上传播,就是有线通信,基本上就是用的铜线、光纤这些线缆,统称为有线介质。

在有线介质上传播数据,速率可以达到很高的数值。

以光纤为例,在实验室中,单条光纤最大速度已达到了26Tbps。。。是传统网线的两万六千倍。。。

光纤

而空中传播这部分,才是移动通信的瓶颈所在。

目前主流的移动通信标准,是4G LTE,理论速率只有150Mbps(不包括载波聚合)。这个和有线是完全没办法相比的。

所以,5G如果要实现端到端的高速率,重点是突破无线这部分的瓶颈。

好大一个波

大家都知道,无线通信就是利用电磁波进行通信。电波和光波,都属于电磁波。

电磁波的功能特性,是由它的频率决定的。不同频率的电磁波,有不同的属性特点,从而有不同的用途。

例如,高频的γ射线,具有很大的杀伤力,可以用来治疗肿瘤。

电磁波的不断频率

我们目前主要使用电波进行通信。当然,光波通信也在崛起,例如LiFi。

LiFi(Light Fidelity),可见光通信

不偏题,回到电波先。

电波属于电磁波的一种,它的频率资源是有限的。

为了避免干扰和冲突,我们在电波这条公路上进一步划分车道,分配给不同的对象和用途。

不同频率电波的用途

请大家注意上面图中的红色字体。一直以来,我们主要是用中频~超高频进行手机通信的。

例如经常说的“GSM900”、“CDMA800”,其实意思就是指,工作频段在900MHz的GSM,和工作频段在800MHz的CDMA。

目前全球主流的4G LTE技术标准,属于特高频和超高频。

我们国家主要使用超高频:

大家能看出来,随着1G、2G、3G、4G的发展,使用的电波频率是越来越高的。

这是为什么呢?

这主要是因为,频率越高,能使用的频率资源越丰富。频率资源越丰富,能实现的传输速率就越高。

更高的频率→更多的资源→更快的速度

应该不难理解吧?频率资源就像车厢,越高的频率,车厢越多,相同时间内能装载的信息就越多。

那么,5G使用的频率具体是多少呢?

如下图所示:

5G的频率范围,分为两种:一种是6GHz以下,这个和目前我们的2/3/4G差别不算太大。还有一种,就很高了,在24GHz以上。

目前,国际上主要使用28GHz进行试验(这个频段也有可能成为5G最先商用的频段)。

如果按28GHz来算,根据前文我们提到的公式:

好啦,这个就是5G的第一个技术特点——

毫 米 波

请允许我再发一遍刚才那个频率对照表:

请注意看最下面一行,是不是就是“毫米波”?

继续,继续!

好了,既然,频率高这么好,你一定会问:“为什么以前我们不用高频率呢?”

原因很简单——不是不想用,是用不起。

电磁波的显著特点:频率越高,波长越短,越趋近于直线传播(绕射能力越差)。频率越高,在传播介质中的衰减也越大。

你看激光笔(波长635nm左右),射出的光是直的吧,挡住了就过不去了。

再看卫星通信和GPS导航(波长1cm左右),如果有遮挡物,就没信号了吧。

卫星那口大锅,必须校准瞄着卫星的方向,否则哪怕稍微歪一点,都会影响信号质量。

移动通信如果用了高频段,那么它最大的问题,就是传输距离大幅缩短,覆盖能力大幅减弱。

覆盖同一个区域,需要的5G基站数量,将大大超过4G。

基站数量意味着什么?钱啊!投资啊!成本啊!

频率越低,网络建设就越省钱,竞争起来就越有利。这就是为什么,这些年,电信、移动、联通为了低频段而争得头破血流。

有的频段甚至被称为——黄金频段。

这也是为什么,5G时代,运营商拼命怼设备商,希望基站降价。(如果真的上5G,按以往的模式,设备商就发大财了。)

所以,基于以上原因,在高频率的前提下,为了减轻网络建设方面的成本压力,5G必须寻找新的出路。

出路有哪些呢?

首先,就是微基站。

微 基 站

基站有两种,微基站和宏基站。看名字就知道,微基站很小,宏基站很大!

宏基站:

室外常见,建一个覆盖一大片

微基站:

看上去是不是很酷炫?

还有更小的,巴掌那么大

其实,微基站现在就有不少,尤其是城区和室内,经常能看到。

以后,到了5G时代,微基站会更多,到处都会装上,几乎随处可见。

你肯定会问,那么多基站在身边,会不会对人体造成影响?

我的回答是——不会。

其实,和传统认知恰好相反,事实上,基站数量越多,辐射反而越小!

你想一下,冬天,一群人的房子里,一个大功率取暖器好,还是几个小功率取暖器好?

大功率方案▼

小功率方案▼

上面的图,一目了然了。基站小,功率低,对大家都好。如果只采用一个大基站,离得近,辐射大,离得远,没信号,反而不好。

天线去哪了?

大家有没有发现,以前大哥大都有很长的天线,早期的手机也有突出来的小天线,为什么现在我们的手机都没有天线了?

其实,我们并不是不需要天线,而是我们的天线变小了。

根据天线特性,天线长度应与波长成正比,大约在1/10~1/4之间。

随着时间变化,我们手机的通信频率越来越高,波长越来越短,天线也就跟着变短啦!

毫米波通信,天线也变成毫米级。。。

这就意味着,天线完全可以塞进手机的里面,甚至可以塞很多根。。。

这就是5G的第三大杀手锏——

Massive MIMO(多天线技术)

MIMO就是“多进多出”(Multiple-Input Multiple-Output),多根天线发送,多根天线接收。

在LTE时代,我们就已经有MIMO了,但是天线数量并不算多,只能说是初级版的MIMO。

到了5G时代,继续把MIMO技术发扬光大,现在变成了加强版的MassiveMIMO(Massive:大规模的,大量的)。

手机里面都能塞好多根天线,基站就更不用说了。

以前的基站,天线就那么几根:

5G时代,天线数量不是按根来算了,是按“阵”。。。“天线阵列”。。。一眼看去,要得密集恐惧症的节奏。。。

不过,天线之间的距离也不能太近。

因为天线特性要求,多天线阵列要求天线之间的距离保持在半个波长以上。如果距离近了,就会互相干扰,影响信号的收发。

你是直的?还是弯的?

大家都见过灯泡发光吧?

其实,基站发射信号的时候,就有点像灯泡发光。

信号是向四周发射的,对于光,当然是照亮整个房间,如果只是想照亮某个区域或物体,那么,大部分的光都浪费了。。。

基站也是一样,大量的能量和资源都浪费了。

我们能不能找到一只无形的手,把散开的光束缚起来呢?

这样既节约了能量,也保证了要照亮的区域有足够的光。

答案是:可以。

这就是——

波 束 赋 形

波束赋形

在基站上布设天线阵列,通过对射频信号相位的控制,使得相互作用后的电磁波的波瓣变得非常狭窄,并指向它所提供服务的手机,而且能跟据手机的移动而转变方向。这种空间复用技术,由全向的信号覆盖变为了精准指向性服务,波束之间不会干扰,在相同的空间中提供更多的通信链路,极大地提高基站的服务容量。

直的都能掰成弯的。。。还有什么是通信砖家干不出来的?

别收我钱,行不行?

在目前的移动通信网络中,即使是两个人面对面拨打对方的手机(或手机对传照片),信号都是通过基站进行中转的,包括控制信令和数据包。。。

而在5G时代,这种情况就不一定了。

5G的第五大特点——D2D,也就是Device to Device(设备到设备)。

D2D

5G时代,同一基站下的两个用户,如果互相进行通信,他们的数据将不再通过基站转发,而是直接手机到手机。。。

这样,就节约了大量的空中资源,也减轻了基站的压力。

不过,如果你觉得这样就不用付钱,那你就图样图森破了。

控制消息还是要从基站走的,你用着频谱资源,运营商爸爸怎么可能放过你。。。

后记。。。

写着写着,小枣君发现洋洋洒洒写的有点多。。。

能看到这的,都是真爱啊。。。

相信大家通过本文,对5G和她背后的通信知识已经有了深刻的理解。而这一切,都只是源于一个小学生都能看懂的数学公式。不是么?

通信技术并不神秘,5G作为通信技术皇冠上最耀眼的宝石,也不是什么遥不可及的创新革命技术,它更多是对现有通信技术的演进。

正如一位高人所说——

通信技术的极限,并不是技术工艺方面的限制,而是建立在严谨数学基础上的推论,在可以遇见的未来是基本不可能突破的。

如何在科学原理的范畴内,进一步发掘通信的潜力,是通信行业众多奋斗者们孜孜不倦的追求。

好啦,今天就到这里吧。谢谢大家的观看,再见!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 通信技术
    +关注

    关注

    20

    文章

    1055

    浏览量

    91574
  • 电磁波
    +关注

    关注

    21

    文章

    1356

    浏览量

    53176
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47802

    浏览量

    554163

原文标题:【技术专栏】有史以来最强的5G入门科普!

文章出处:【微信号:Anxin-360ic,微信公众号:芯师爷】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    5G是什么?5G到底什么时候来?

    平方公里内可同时有100万个网络连接我们目前使用的4G网络,时延的极限是50毫秒左右,还很难实现远程实时控制,但
    发表于 06-14 17:02

    【干货】5G无线通信技术概念及应用

    纳米核心技术,来完成Android基础文件与硬件驱动的完美分离。由于5G高速无线传输的特点可以无缝隙地将硬件驱动从云储存同步于终端,不但节省了终端的储存空间,也极大地丰富了终端的硬件
    发表于 12-21 18:32

    如何理解5G和物联网的关系?

    近日我国5G取得突破性进展,首个5G电话打通,正式开通
    发表于 04-12 17:18

    MMIC技术——实现降低5G测试测量成本与复杂性的双重突破

    面临5G测试系统设计挑战的T&M供应商不少帮助。关于MACOMMACOM是一家新生代半导体器件公司,集高速增长、多元化和高盈利能力等特性于一身。公司通过为光学、无线和卫星网络提供突破
    发表于 07-04 10:20

    啥是5G5G有啥了不起?

    相比的。所以,5G如果实现
    发表于 03-07 15:00

    5G覆盖试点背景及相关技术介绍

    互联发展方向。满足面向未来业务高速率低时延的发展需求,需要采用更先进的无线传输技术,5G 将采用包括大规模天线阵列、超密集组网、高阶调制、非正交传输和全双工等关键技术。目前国内各通信
    发表于 06-18 07:18

    毫米波MIMO天线开关对5G通信的意义

    益于高速率低延迟的实现。工信部表示将在2020年启动5G商用,2017年至2018年5G将在国内开始测试,2019年进行预商用。ITU在2017年二月发布了一个文档,对
    发表于 06-19 06:58

    5G技术,为什么中国能行?

    需要有这样的多输入多输出天线系统。 一个比较合理的5G无线接取网络设计应该是用穿透力强的低频段频谱实现大区域的覆盖,然后用高频段频谱通过密度极高的多输入多输出天线系统在人口密集区域实现
    发表于 08-15 08:30

    爱立信为什么推出5G小基站?

    日前,爱立信推出一款无线小蜂窝产品——5G无线点系统,支持5G中频频段(3-5GHz),支持速率
    发表于 08-16 08:02

    【9月26日|广州】5G部署全攻略,从基站到终端,探讨5G设计测试难题

    。满足这些要求就意味着网络和设备需要做出改变,以适应更高的信道带宽,更密集的波形和不同的用户特性,并逐步向毫米波频段推进。 在这一进程中,如何解读最新的3GPP标准,顺利完成5G
    发表于 08-26 15:17

    5G基础设施和对可编程性的需求有哪些?

    。或许更具影响力的是,蜂窝连接对那些之前被数字化剥夺权利的人产生的影响; 例如,2016年撒哈拉以南非洲地区每100人通常有1部固定电话,但有74台移动连接设备。展望未来十年,随着5G的出现,无线基础设施
    发表于 10-08 09:37

    5G技术的商用进程及应用

    网络的最高速率可达10Gbit/s峰值速率,外加极低的延迟(1ms),这对于物联网的应用是一个关键性的优势。与现在使用蜂窝网络相比,
    发表于 06-30 11:32

    5G专线业务低时延特性的影响因素

    专线的时延将缩短为4G的1/10,这对底层的承载网络提出了前所未有的挑战。于是,5G传输专线低时延特性的研究工作实属重中之重。  1、
    发表于 12-03 14:06

    5G如何满足垂直行业的差异化业务需求

    低成本、中高速率的物联网,进一步增强V2X、URLLC和IIoT应用;三是深度挖潜5G网络能力,包括5G空口定位、大数据采集与应用等新能力。与垂直行业赋能相关的能力增强包括如下:  -实现
    发表于 12-03 14:16

    5G为什么必须要使用边缘计算?

    部分功能下沉边缘计算,互通的请求绝大部分不出厂区就能全部完成,这个1毫秒的时延,就能
    发表于 12-03 14:30