0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何正确的增加退耦电容降低生产的噪音?

PE5Z_PCBTech 来源:未知 作者:工程师郭婷 2018-07-20 15:18 次阅读

使用基于电磁场分析的设计软件来选择退耦电容的大小及其放置位置可将电源平面与地平面的开关噪声减至最小。随着信号的沿变化速度越来越快,今天的高速数字电路板设计者所遇到的问题在几年前看来是不可想象的。对于小于1纳秒的信号沿变化,PCB板上电源层与地层间的电压在电路板的各处都不尽相同,从而影响到IC芯片供电,导致芯片的逻辑错误。为了保证高速器件的正确动作,设计者应该消除这种电压的波动,保持低阻抗的电源分配路径。为此,你需要在电路板上增加退耦电容来将高速信号在电源层和地层上产生的噪声降至最低。你必须知道要用多少个电容,每一个电容的容值应该是多大,并且它们放在电路板上什么位置最为合适。一方面你可能需要很多电容,而另一方面电路板上的空间是有限而宝贵的,这些细节上的考虑可能决定设计的成败。反复试验的设计方法既耗时又昂贵,结果往往导致过约束的设计从而增加不必要的制造成本。使用软件工具来仿真、优化电路板设计和电路板资源的使用情况,对于要反复测试各种电路板配置方案的设计来说是一种更为实际的方法。本文以一个xDSM(密集副载波多路复用)电路板的设计为例说明此过程,该设计用于光纤/宽带无线网络。软件仿真工具使用Ansoft的SIwave,SIwave基于混合全波有限元技术,可以直接从layout工具Cadence Allegro, Mentor Graphics BoardStation, Synopsys Encore和 Zuken CR-5000 Board Designer导入电路板设计。图1是SIwave中该设计的PCB版图。由于PCB的结构是平面的,SIwave可以有效的进行全面的分析,其分析输出包括电路板的谐振、阻抗、选定网络的S参数和电路的等效Spice模型。

xDSM电路板的尺寸,也就是电源层和地层的尺寸是11×7.2 英寸(28×18.3 厘米)。电源层和地层都是1.4mil厚的铜箔,中间被23.98mil厚的衬底隔开。为了理解对电路板的设计,首先考虑xDSM电路板的裸板(未安装器件)特性。根据电路板上高速信号的上升时间,你需要了解电路板在频域直到2GHz范围内的特性。图2所示为一个正弦信号激励电路板谐振于0.54GHz时的电压分布情况。同样,电路板也会谐振于0.81GHz和0.97GHz以及更高的频率。为了更好地理解,你也可以在这些频率的谐振模式下仿真电源层与地层间电压的分布情况。图2所示在0.54GHz的谐振模式下,电路板的中心处电源层和地层的电压差变化为零。对于一些更高频率的谐振模式,情况也是如此。但并非在所有的谐振模式下都是如此,例如在1.07GHz、1.64GHz和1.96 GHz的高阶谐振模式下,电路板中心处的电压差变化是不为零的。

找到零压差变化点有助于我们将需要在短时间内产生大量电流变化的器件放置于此。例如,如果要将一块Xinlix的FPGA芯片放在电路板上,该芯片会在0.2纳秒内产生2A的输入电流变化。如此短时间内的大电流变化将带来电路板的电源完整性问题,会使电路板产生各种模式的谐振,导致电源层和地层电压的不均匀。然而,电路板中心处在某些谐振模式下具有零压差变化的特性,因此将FPGA芯片放置于此可以避免电路板产生这些低频的谐振模式。FPGA芯片不能激发这些低频谐振模式,是由于从电路板的中心处将无法耦合至这些谐振模式。图3中的紫色曲线显示的是当位于电路板中心处的芯片从电源平面吸入电流时引起的谐振。事实上,峰值出现在高阶的谐振频率1.07GHz、1.64GHz和1.96GHz上,而不是低阶的谐振频率0.54GHz、0.81GHz和0.97GHz上,这正如我们所料。

尽管器件的布局与放置的位置有助于减小电源完整性的问题,但它们并不能解决所有的问题。首先,你不能将所有的关键器件放在电路板的中心。通常情况下,器件放置的灵活性是有限的。其次,在任何给定的位置总有一些谐振模式会被激发。例如,图3中绿色曲线表示当你将芯片放置在沿某一坐标轴偏移中心位置时,0.54GHz的谐振模式将被激发。成功的设计电路板的PDS(电源分配系统)的关键在于在合适的位置增加退耦电容,以保证电源的完整性和在足够宽的频率范围内保证地弹噪声足够小。

退耦电容设想FPGA在0.2纳秒的上升沿 吸入2A的电流,此时电源电压会暂时降低(压降),而地平面电压会暂时被拉高(地弹)。其变化幅度取决于电路板的阻抗和芯片偏置管脚处的用于提供电流的退耦电容(图4a)。由于电流的瞬变值为2A,电压的瞬变值由V=Z×I决定,Z是从芯片端视出的阻抗,因此,为了避免电压的尖峰波动,在从直流到信号带宽的频率范围内,Z值必须低于某一门限值。(图4b)

如何正确的增加退耦电容降低生产的噪音?

在该设计中,为了保持电源完整性,电源—地的电压波动必须保持在标准值3.3V的5%以内。因此噪声不能大于0.05×3.3V=165 mV。可以据此按照欧姆定律计算出PDS的最大阻抗165mV/2A=82.5mΩ,图4中虚线部分即为PDS阻抗应该满足的目标区域。对于最低频率,通常是1kHz或者更低的频率——电源满足阻抗特性的要求,电源和地层的结构通常不会破坏阻抗特性,因为它们呈现低电阻与电感特性。而当频率高于1kHz时,电流通路的互感大。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电磁场
    +关注

    关注

    0

    文章

    743

    浏览量

    46816
  • 退耦电容
    +关注

    关注

    1

    文章

    26

    浏览量

    9487
  • 开关噪声
    +关注

    关注

    0

    文章

    18

    浏览量

    11227

原文标题:高速PCB仿真——电源完整性与地弹噪声

文章出处:【微信号:PCBTech,微信公众号:EDA设计智汇馆】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    退电容/去电容的作用及选择知识

    MHz量级。为了保证芯片附近电源线上的电压不至于因为SSN和地弹噪声降低超过器件手册规定的容限,这就需要在芯片附近为高速电流需求提供一个储能电容,这就是我们所要的退
    发表于 03-27 14:55

    滤波电容、去电容、旁路电容作用

    理解为电源滤波电容,越靠近芯片越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。采用电容退是解决电源噪声问题的主要方
    发表于 03-08 16:33

    [转]音频电路噪音的一点心得

    信号电压,地电位变化将被放大器拾取并放大,产生交流声。增加地线线宽、背锡处理只能在一定程度上降低地线干扰,但治标不治本,个别未严格将地线分开的PCB由于地线宽、走线很短,同时放大级数很少、退
    发表于 02-26 22:01

    电容原理(解释十分透彻)

    电容退原理 采用电容退是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,
    发表于 06-24 06:27

    为什么我们都在使用退电容

    例子,如果没有合适的退,运放会更容易产生振荡。了解使用退电容的原因能够增加你对这个问题的理解
    发表于 09-21 09:52

    电容原理

    采用电容退是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
    发表于 05-31 07:55

    耦合电容退电容资料分享!

    帖~~~~~~~~~~~~~~~~~~~~~~~~~~什么是耦合电容?什么是去电路?耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退是指对电源采取进一步的滤
    发表于 08-05 04:36

    什么是旁路?什么是退

    滤波电容、去电容、旁路电容作用及其原理什么是旁路?什么是退
    发表于 03-11 06:05

    我们为什么要使用退电容?原因是什么?

    为什么要使用退电容?原因是什么?
    发表于 04-13 06:28

    电源退是如何去完成的?

    什么是电源退?电源退是如何去完成的?
    发表于 07-19 06:28

    浅析滤波电容退电容

    1、滤波电容 它并接在电路正负极之间,把电路中无用的交流电流去掉,一般采用大容量电解电容器,也有采用其他固定电容器的.2、退
    发表于 09-17 07:16

    退电容的放置位置

    去年第一次跟着师父去做产品的EMC实验的时候,颇有收获在此整理分享给大家。以前在学生时代的时候对于MCU退电容的作用理解的并不是很透彻,导致不是很关心退
    发表于 11-10 08:24

    射频设计:PCB叠层、电源退、过孔规则

    %的磁通泄漏,有效的提升EMI性能射频设计难题「电源退篇」电源供电需要通过退电容滤除电源的噪声,如图,避免噪声在不同设备(IC)之间流转
    发表于 11-07 20:48

    BGA放置在PCB顶层如何移动BGA下面底层的退电容呢?

    BGA放置在PCB顶层,退电容放置在BGA下面的底层,如何移动退电容
    发表于 03-29 17:24

    如何正确降低风扇噪音

    由Aearo Technologies(3M旗下公司)生产的垫圈就可以减少风扇向安装结构传递振动时产生的噪音。 以下是生产风扇外壳附带产品的厂商提供的一些插图。 除了帮助安装风扇的硬件外,正确
    的头像 发表于 10-11 16:34 1w次阅读