0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

韩国研究团队开发成功了应用于显示屏前部的透明指纹识别传感器

XcgB_CINNO_Crea 来源:未知 作者:李倩 2018-07-09 16:16 次阅读

CINNO外媒资讯,韩国研究团队开发成功了应用于显示屏前部的透明指纹识别传感器,可大幅提高指纹识别的灵敏度和传导度,使智能手机屏幕上任意位置的指纹识别成为可能。

对温度和压力能同时进行指纹识别的透明指纹传感器(来源:UNIST供图)

UNIST(韩国蔚山科技大学)6月4日公布称,新材料工学部Park Jangwoong教授团队和电气电子计算机工学部 Byun Youngjae教授团队共同开发成功了可同时测量指纹和温度,压力的透明传感器。该传感器与目前的指纹传感器相比灵敏度提高了17倍,并且可以测量压力和温度,具有识别伪造指纹的功能。

随着智能手机解锁和交易等对指纹识别的应用需求增多,智能手机厂商争先恐后地在智能手机Home键上添加指纹识别功能。为了扩大智能手机的屏占比,屏下指纹识别技术受到广泛关注。

屏下指纹识别是将手指触摸在屏幕上就可进行指纹识别的技术。根据指纹识别的方式可分为光学式,超声波式和电容式三种。光学式和超声波指纹传感器被应用于显示屏上的案例已经公开了不少。

电容式指纹传感器具备精确度高,可实现屏幕整体指纹识别的功能。并且比光学式更薄,与超声波式相比结构简单,成本更低。但是因为制作指纹传感器的透明电极的传导度低,目前的电容式指纹传感器只能在低频带和高电压下才能驱动。该研究的第一作者UNIST新材料工学部硕博连读研究员An Byungwan说明称“200 KHZ以下的低频带上同时存在着显示屏发出的噪声,因为这样的信号的混淆造成指纹识别的精确度下降,所以电容式指纹传感器的商用化困难。”

Park Jangwoong-Byun Youngjae研究团队为了提高透明电极的传导度,结合了银纳米纤维(silver nanofiber)和银纳米线,用来作透明电极的材料。两种物质分别有各自的优点。银纳米纤维虽然比较稀疏但是传导性好,银纳米线虽然传导性差但是比较紧致。集两者优点的“银纳米纤维-银纳米线混合透明电极”具有传导性好,便于维持的特性。与目前的指纹传感器相比,传导性提高了约10倍,即使做成50㎛的模式也不会断掉,并能保持着良好的传导性。

研究团队用混合透明电极制成了比目前的灵敏度提升17倍的指纹传感器。该指纹传感器即使在1MHz的高频段下1V的低电压也能驱动。因为透明电极的传导性高,性能有了很大的提升。研究团队在该指纹传感器上添加了可测量温度和压力的传感器,开发了可同时处理三个测定值的测定系统。接触该传感器时,可以根据压力和体温的不同,识别出伪造指纹和真人指纹。Park Jangwoong教授称“此次开发的透明柔性指纹传感器在解决电容式指纹识别的问题点方面具有重大意义。不仅将能显示屏的商用化上应用,而且将对使用柔性新一代显示屏的各种设备的保安性能强化上作出贡献。”

此次的研究成果发布在国际著名学术刊物Nature Communications 3日的网络版上。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2513

    文章

    47518

    浏览量

    738272
  • 智能手机
    +关注

    关注

    66

    文章

    17964

    浏览量

    176825
  • 指纹识别
    +关注

    关注

    43

    文章

    1710

    浏览量

    101662

原文标题:屏下指纹 | 柔性透明电容任意位置指纹识别技术新突破,灵敏度提高17倍

文章出处:【微信号:CINNO_CreateMore,微信公众号:CINNO】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    指纹挂锁方案——采用ACH512或ACM32FP4指纹芯片和88*112传感器指纹识别速度快,BOM成本低

    :ACH512或ACM32FP4• 传感器分辨率:88*112点阵(推荐)• 指纹识别速度:平均0.8秒• 指纹库大小:30枚指纹• 待机电流(手指检测):10uA• 工作电流(
    发表于 03-12 11:46

    指纹传感器的定义 指纹传感器的应用

    指纹传感器的定义 指纹传感器的应用  指纹传感器是一种生物
    的头像 发表于 03-05 17:35 679次阅读

    超声波指纹识别技术原理 超声波指纹识别和短焦区别

    超声波指纹识别技术是一种利用声波在物体表面的反射和散射特性来识别指纹的方法。与传统的光学指纹识别技术相比,超声波指纹识别技术具有独特的优势,
    的头像 发表于 02-03 14:06 1160次阅读

    使用stm32f103c8t6怎么做指纹识别

    使用stm32f103c8t6怎么做指纹识别
    发表于 11-10 08:21

    屏下指纹识别技术工作原理 屏下指纹识别技术的难题是什么

    光学式指纹识别是在屏幕下方设置光学传感器,通过发出近红外光来识别用户的指纹纹路。而超声波式指纹识别就是在屏幕下方设置超声波
    发表于 10-13 12:28 590次阅读
    屏下<b class='flag-5'>指纹识别</b>技术工作原理 屏下<b class='flag-5'>指纹识别</b>技术的难题是什么

    手势识别传感器是如何工作的?

    电子发烧友网报道(文/黄山明)手势识别传感器,顾名思义是一种能够对用户手势动作进行识别传感器。手势识别传感器可以应用于很多领域,例如医疗健
    的头像 发表于 09-22 01:23 2232次阅读

    全息透明oled显示屏怎么用

    全息透明OLED显示屏是一种新兴的显示技术,具有透明度高、色彩鲜艳、视角广等优点,被广泛应用于广告、展览、商业展示等领域。本文将介绍全息
    的头像 发表于 08-16 17:08 624次阅读

    人脸识别指纹识别哪个安全?

    人脸识别指纹识别哪个安全? 随着科技的不断发展,越来越多的技术被应用到我们的生活中,人脸识别指纹识别被广泛使用于安全领域。人们常常会问,
    的头像 发表于 08-09 18:26 1466次阅读

    AS608指纹识别模块简介

    AS608 指纹识别模块主要是指采用了杭州晟元芯片技术有限公司(Synochip)的 AS608 指纹识别芯片 而做成的指纹模块,模块厂商只是基于该芯片设计外围电路,集成一个可供2次开发
    的头像 发表于 06-21 15:08 1331次阅读
    AS608<b class='flag-5'>指纹识别</b>模块简介

    指纹识别环粘接固定低温固化环氧胶水用胶方案

    指纹识别环粘接固定低温固化环氧胶水用胶方案由汉思新材料提供客户是一家电子产品生产工厂。专业研发、产销、设计电子产品,发光二极管背光源,家用电器,节能环保产品,指纹识别传感器,其中指纹识别传感器产品
    的头像 发表于 06-19 17:21 386次阅读
    <b class='flag-5'>指纹识别</b>环粘接固定低温固化环氧胶水用胶方案

    学习这期视频被媳妇揍,可别回来找我!arduino:指纹识别

    指纹识别
    YS YYDS
    发布于 :2023年05月19日 17:07:39

    颜色传感器丨颜色识别传感器丨颜色感应器在锂电制片机上的应用

    颜色传感器是一种广泛应用于自动化控制系统中的传感器,可以检测物体的颜色,用于对物体进行分类和识别。随着科技的不断发展,颜色
    的头像 发表于 05-15 15:28 775次阅读
    颜色<b class='flag-5'>传感器</b>丨颜色<b class='flag-5'>识别传感器</b>丨颜色感应器在锂电制片机上的应用

    一文详解AS608指纹识别模块

    AS608 指纹识别模块主要是指采用了杭州晟元芯片技术有限公司(Synochip)的 AS608 指纹识别芯片 而做成的指纹模块,模块厂商只是基于该芯片设计外围电路,集成一个可供2次开发
    的头像 发表于 04-14 14:53 1.3w次阅读
    一文详解AS608<b class='flag-5'>指纹识别</b>模块

    如何将指纹识别连接到esp32 cam并使用adafruit指纹库?

    我对使用 esp32 cam 还是很陌生,我有一个问题。希望有人能帮助我。 我想将我的指纹识别连接到我的 esp32 cam 并使用 adafruit 指纹库。我只是不知道要使用哪些引脚以及如何在
    发表于 04-11 09:30

    指纹传感器的市场状况 主流手机指纹识别厂商有哪些

    指纹识别传感器的技术已经经历了几代演进。目前主流的有光学传感器、半导体传感器及超声波传感器三种。光学指纹
    发表于 03-29 09:50 1971次阅读