0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

1nm晶体管诞生 计算技术界迎来重大突破

h1654155971.7596 来源:未知 作者:胡薇 2018-06-22 15:44 次阅读

据外媒报道,今天,沉寂已久的计算技术界迎来了一个大新闻。劳伦斯伯克利国家实验室的一个团队打破了物理极限,将现有最精尖的晶体管制程从14nm缩减到了1nm。晶体管的制程大小一直是计算技术进步的硬指标。晶体管越小,同样体积的芯片上就能集成更多,这样一来处理器的性能和功耗都能会获得巨大进步。

多年以来,技术的发展都在遵循摩尔定律,即当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。眼下,我们使用的主流芯片制程为14nm,而明年,整个业界就将开始向10nm制程发展。

不过放眼未来,摩尔定律开始有些失灵了,因为从芯片的制造来看,7nm就是物理极限。一旦晶体管大小低于这一数字,它们在物理形态上就会非常集中,以至于产生量子隧穿效应,为芯片制造带来巨大挑战。因此,业界普遍认为,想解决这一问题就必须突破现有的逻辑门电路设计,让电子能持续在各个逻辑门之间穿梭。

此前,英特尔等芯片巨头表示它们将寻找能替代硅的新原料来制作7nm晶体管,现在劳伦斯伯克利国家实验室走在了前面,它们的1nm晶体管由纳米碳管和二硫化钼(MoS2)制作而成。MoS2将担起原本半导体的职责,而纳米碳管则负责控制逻辑门中电子的流向。

眼下,这一研究还停留在初级阶段,毕竟在14nm的制程下,一个模具上就有超过10亿个晶体管,而要将晶体管缩小到1nm,大规模量产的困难有些过于巨大。

不过,这一研究依然具有非常重要的指导意义,新材料的发现未来将大大提升电脑的计算能力。

据白宫官网报道,美国东部时间22日,2015年美国最高科技奖获奖名单公布,包括9名国家科学奖获得者(National Medal of Science)和8名国家技术和创新奖(National Medal of Technology and Innovation)获得者。其中美籍华人科学家胡正明荣获年度国家技术和创新奖。

胡正明教授是鳍式场效晶体管(FinFET)的发明者,如今三星、台积电能做到14nm/16nm都依赖这项技术。他1947年出生于北京豆芽菜胡同,在***长大,后来考入加州大学伯克利分校。

在华为海思麒麟950的发布会上,胡正明教授曾现身VCR,据他介绍,FinFET的两个突破,一是把晶体做薄后解决了漏电问题,二是向上发展,晶片内构从水平变成垂直。

胡认为,FinFET的真正影响是打破了原来英特尔对全世界宣布的将来半导体的限制,这项技术现在仍看不到极限。

2010年后,Bulk CMOS工艺技术在20nm走到尽头,胡教授的FinFET和FD-SOI工艺发明得以使摩尔定律在今天延续传奇。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18030

    浏览量

    221547
  • 晶体管
    +关注

    关注

    76

    文章

    8972

    浏览量

    134652

原文标题:【进展】摩尔定律有救了!1nm晶体管诞生

文章出处:【微信号:Anxin-360ic,微信公众号:芯师爷】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    我国在光存储领域获重大突破 或将开启绿色海量光子存储新纪元

    ”;这是我国在光存储领域获重大突破。有助于解决大容量和节能的存储技术难题。 利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破了衍射极限的限制,实现
    的头像 发表于 02-22 18:28 1353次阅读

    量子计算机 未来希望

    自己从事语音识别产品设计开发,而量子技术和量子计算机必将在自然语言处理方面实现重大突破,想通过此书学习量子计算技术,储备知识,谢谢!
    发表于 02-01 12:51

    晶体管Ⅴbe扩散现象是什么?

    是,最大输出电流时产生0.2 V压降。功率场效应可以无需任何外接元件而直接并联,因为其漏极电流具有负温度系数。 1晶体管的Vbe扩散现象是什么原理,在此基础上为什么要加电阻? 2、场效应
    发表于 01-26 23:07

    在特殊类型晶体管的时候如何分析?

    管子多用于集成放大电路中的电流源电路。 请问对于这种多发射极或多集电极的晶体管时候该如何分析?按照我的理解,在含有多发射极或多集电极的晶体管电路时,如果多发射极或多集电极的每一极分别接到独立的电源回路中
    发表于 01-21 13:47

    如何选择分立晶体管

    来至网友的提问:如何选择分立晶体管
    发表于 11-24 08:16

    中国镍基超导体机理研究重大突破

    中国镍基超导体机理研究重大突破 超导体这门前沿科技具有重要的科学和应用价值,超导材料在所有涉及电和磁的领域都有用武之地,包括电子学、生物医学、科学工程、交通运输、电力等领域。 据央视新闻报道,此前
    的头像 发表于 11-03 16:00 530次阅读

    紧凑型有机半导体激光器技术取得重大突破

    据麦姆斯咨询报道,近日,英国圣安德鲁斯大学(University of St. Andrews)的科学家表示,他们在开发紧凑型有机半导体激光器技术的数十年挑战中取得了“重大突破(significant breakthrough)”。
    发表于 10-30 15:23 168次阅读
    紧凑型有机半导体激光器<b class='flag-5'>技术</b>取得<b class='flag-5'>重大突破</b>

    我国新型光学晶体研制实现重大突破

    以满足我国半导体晶圆检测等领域的重大需求。 非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。
    的头像 发表于 10-11 09:47 343次阅读

    晶体管详细介绍

    专业图书47-《新概念模拟电路》t-I晶体管
    发表于 09-28 08:04

    华为芯片迎重大突破

    华为芯片迎重大突破:目前华为的麒麟系列芯片已经成为世界上最强大的移动芯片之一,被广泛应用于华为自家的旗舰手机以及平板电脑等设备上。 华为一直是全球领先的芯片设计和制造企业之一,近年来通过自主研发
    的头像 发表于 09-06 11:14 3376次阅读

    不同类型的晶体管及其功能

    ) 额定值范围为 80 mA 至 600mA。 这些晶体管有两种形式,例如 PNP 和 NPN。该晶体管的最高工作频率为 1 至 300 MHz。这些晶体管用于放大几伏等小信号以及仅使
    发表于 08-02 12:26

    重大突破」微软量子超级计算机路线图公布!

    关注微软科技视频号 了解更多科技前沿资讯 点亮在看,给BUG点好看 点击阅读原文,了解关于微软那些事儿 原文标题:「重大突破」微软量子超级计算机路线图公布! 文章出处:【微信公众号:微软科技】欢迎添加关注!文章转载请注明出处。
    的头像 发表于 07-07 00:10 269次阅读
    「<b class='flag-5'>重大突破</b>」微软量子超级<b class='flag-5'>计算</b>机路线图公布!

    谷歌量子计算机新突破 可几秒内完成47年的任务

    谷歌内部的研究人员在ArXiv上发布了一篇论文,宣布在量子计算领域取得了重大突破。他们声称,谷歌最新的量子计算技术已经超越了现有的经典超级计算机的能力。
    的头像 发表于 07-05 17:51 1323次阅读

    麻省理工华裔研究出2D晶体管,轻松突破1nm工艺!

    然而,前不久麻省理工学院(MIT)华裔研究生朱家迪突破了常温条件下由二维(2D)材料制造成功的原子晶体管,每个晶体管只有 3 个原子的厚度,堆叠起来制成的芯片工艺将轻松突破
    的头像 发表于 05-31 15:45 1168次阅读
    麻省理工华裔研究出2D<b class='flag-5'>晶体管</b>,轻松<b class='flag-5'>突破</b><b class='flag-5'>1nm</b>工艺!

    麻省理工华裔:2D 晶体管,轻松突破 1nm

    然而,前不久麻省理工学院(MIT)华裔研究生朱家迪突破了常温条件下由二维(2D)材料制造成功的原子晶体管,每个晶体管只有 3 个原子的厚度,堆叠起来制成的芯片工艺将轻松突破
    的头像 发表于 05-30 14:24 1323次阅读
    麻省理工华裔:2D <b class='flag-5'>晶体管</b>,轻松<b class='flag-5'>突破</b> <b class='flag-5'>1nm</b> !