0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FEC使PAM4成为可能 DSP处理实现112G

NJ90_gh_bee81f8 来源:未知 作者:胡薇 2018-06-22 14:13 次阅读

力科(Teledyne LeCroy)公司的David Maliniak在2016年写了一篇很好的文章,解释了PAM4的基本原理。我们需要更多的数据,而且希望更快,Maliniak说道。在即将来临的5G时代,NRZ编码对于我们来说还不够快,而NRZ型编码也不能满足这些需求。

我的同事Martin Rowe评论说,NRZ已死,而根据DesignCon 2018会议上一个专题为“闭眼场景”的讨论小组的专家观点,NRZ仍有用武之地。当然,在56GHz和短距离铜链路上,NRZ(称为PAM2)仍然合适并且有用。但在其他场合,特别是在56Gbps和112Gbps,PAM4的四电平脉冲幅度调制将具有绝对优势!

博通(Broadcom)公司在PAM4、PAM8和PAM16上都进行了试验,发现PAM8和PAM16的眼睛太小,于是PAM4在56Gbps上凸显出来。Rowe在DesignCon 2018之后提出了另一个观点:112是新的56(Gbps)。

其他讨论小组成员也有评论,比如前向纠错(FEC)将使PAM4成为可能,DSP处理将会实现112Gbps等。本文稍后会讨论这个问题。

高速电缆/连接器的重要性

有时我们会忘记,电缆和连接器可能是高速通道中最薄弱的环节。Samtec和Credo两家公司今年在OFC 2018(美国光纤通讯展览会及研讨会)上展出了一个采用Samtec Flyover系统的演示。他们采用Credo的时钟和数据恢复(CDR)芯片,设置了两个112Gbps PAM4数据端口信号通过射频跳线传送到Samtec的FQSFP-DD连接器的信号完整性(SI)表征卡。然后,信号再通过12英寸的Samtec超低偏斜双轴电缆,到达Samtec加速高速电缆组件SI表征卡。

信号通路最终通过第二组RF跳线到第二个Credo CDR,最后我们在GUI上看到通道输出,它显示112Gbps PAM4数据以31位的伪随机序列运行,误码率为2e-7(可以去Samtec网站上观看视频)。

瞧:我们对在一根相当长的电缆上传输高速信号有了概念证明!

挑战和机遇

人们对带宽(BW)的需求一直以令人眩目的速度增长,IC、系统和光纤行业正试图达到一种新的信号传输速率,以满足对带宽的需求。IEEE 802.3正在为100GBASE-DR1开发100G信令,而400GBASE-DR4和OIF PLL工作组也开始了CEI-112G-PAM4-VSR的相关工作。MACOM公司早已预见到了这种趋势,并且已经在实验室中研究这种技术一年多了。

数据中心

对于数据中心内的通信,特别是在112Gbps的速率下,光分组交换提供了一种高效节能的方式。业界已经使用PAM4和PAM8进行预失真分析,并查看了三种光接收器。使用PAM8及一个半导体光放大器(SOA)-PIN和62.5GHz栅格,单级系统可连接48台服务器。若使用两级配置,可连接的服务器数量激增到1488个。可连接的服务器数量受两个参数的限制:

(1)光功率预算,它取决于光接口的类型;

(2)波长信道的数量,它可以针对所用激光器的调谐频带、调谐机制的分辨率以及信道频谱占用率来解决。

内部DC互连网络占数据中心总功耗的23%;大多数网络使用电分组交换机(EPS),它们通过光学连接,速度高达10Gbps。但是,现在可以实现40至100+Gbps的比特率。性能/成本比在这里很重要;目前的系统多使用4×25Gbps,或10×10Gbps等并行链路,有的甚至采用基于强度调制和直接检测(IM-DD)的多电平格式。

我很高兴地看到,使用低功耗模拟(电路或分组级)光交换降低了功率消耗,而数字(比特级)光交换则成了“数字白痴”。另外,光交换应该有助于降低由DC连接内部引入的延迟。

《Dimensioning of 112G Optical-Packet-Switching-Based Interconnects for Energy-Efficient Data Centers(用于高能效数据中心的112G光分组交换互连的尺寸确定)》一文的作者选择使用光分组交换(OPS)来废止数据中心连接中的EPS。无源光pod互连(POPI)具有一个简单的使用光学星形耦合器的无源基础架构。根据所需的传输容量,POPI可用于连接机架和服务器(图1)。

图1:在POPI架构中,机架1和2中的服务器共享所有的波长(红色/绿色)。机架r的服务器使用不同的波长。

特别是在城域网(MAN)应用中,业界目前在研究依赖于可对波长快速调谐的激光器的技术,如时隙波长交织网(TWIN)。这类技术正受到设计工程师的重视,因为与其他方案相比,它们可以降低功耗和缩短延迟时间,这对服务器系统是至关重要的。将互连比特率提高到112Gbps,可以实现快速的服务器迁移,并且可以根据可用的电力和工作负载来关闭一些服务器。

长距离

Inphi公司在2015年面向云互连开发出了首款千兆以太网PAM4 IC芯片。由于100G数据中心到目前为止是采用四根25Gbps光纤/波长,这种100GHz光学PAM4调制方案通过在相同波特率下将比特/符号数加倍,可减少光纤数量。采用PAM4编码、实时DSP和前向纠错(FEC)技术,可以将复杂功能转换到CMOS中。与目前使用的NRZ解决方案相比,这种方法可以以更低的成本提高带宽。

《First demonstration of PAM4 transmissions for record reach and high-capacity SWDM links over MMF using 40G/100G PAM4 IC chipset with real-time DSP(使用带实时DSP的40G/100G PAM4 IC芯片组在多模光纤(MMF)上使用PAM4传输实现创纪录的距离和大容量短波波分复用(SWDM)链路的首次演示)》一文中使用了新的PAM4芯片组,针对标准的OM4和宽带多模光纤(WBMMF)对采用实时DSP的链路性能及由此带来的更小的芯片尺寸进行了研究,从而获得40/50Gbps和100/200Gbps的速度升级。PAM4传输通过使用Ge/Si雪崩光电二极管(APD),能够达到550m的比例纪录,并通过实时的DSP处理,在WBMMF上实现212.5Gbps的汇总速率纪录(图2)。

图2:此处显示的PAM4测试架构用到(a)1λ 40/50Gbps垂直腔面发射激光器(VCSEL),(b)2λ(或更大)100/200Gbps VCSEL,并在插图中显示了850nm Tx光学眼图和Rx DSP恢复直方图; (c)显示了传统OM4和WBMMF的有效模式带宽(EMB)与波长的关系。

该测试显示在1310nm波长下、在长达40km距离内可实现无误差传输,且在KP4 FEC阈值下具有极佳的裕量。该解决方案可实现CFP4和QSFP28等小尺寸模块,与现有设计相比,可实现小得多的尺寸和更高的性能。

短距离

上世纪90年代后期,我曾是Burr-Brown公司的北电(Nortel)客户经理/应用工程师,看到了北电开发的业界第一款相干光转发器以40Gbps的速度运行。那时电信行业对于40G还没有做好准备,因为电信运营商认为,地下已经铺设太多“暗”光纤,他们希望在投资更快的系统之前先将这些数据管道填补好。

在过去10年左右,开发人员用正交幅度调制(QAM)尝试了各种不同的波特率。最近的研究工作主要集中在带DSP处理的相干QAM系统,以便在更高比特率下达到更长的传输距离。

上述系统中可以看到色散(CD)和偏振模式色散(PMD)问题——根据《Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications(沃尔泰拉和维纳均衡器在短距离100G PAM-4上的应用)》一文,它们可分别由固定和自适应的线性均衡器校正(图3)。

图3:自适应均衡器框图。

自适应滤波器通常用于实现噪声和回声消除、正弦抑制、均衡以及其他更多应用。

在图3中,符号s通过具有传递函数H的信道发送出去。均衡滤波器可具有不同的结构,它带有系数向量w和输入样本向量x,其中M是表示符号间干扰(ISI)传播的滤波器跨度(M个采样周期)。在这种情况下,对于这篇文章,我们假定M是奇数,=2K+1。wdc是直流分量。想了解更多详情,请参阅此文。

沃尔泰拉和维纳均衡器滤波器

维纳滤波器将沃尔泰拉滤波器作为它的一个子集。在这篇文章中,作者使用了基于离散非线性维纳模型的随机梯度自适应算法。

作为维纳滤波器的一个子集,沃尔泰拉均衡器滤波器擅长于半导体激光二极管失真、单模滤波器的传递函数和多模干涉耦合器内的非线性传播等的建模。在沃尔泰拉系统中使用的最小均方(LMS)算法是一种随机最陡下降算法,其中真实梯度向量通过直接从输入和输出信号获得的估计值来近似,而且非常简单。但是,当自相关矩阵特征值具有很大的散布范围时,收敛慢是不可避免的。使用离散傅立叶变换(DFT)或格拉姆-施密特(Gram-Schmidt)正交化可获得更好的正交性。

这篇文章确定有限沃尔泰拉滤波器最适合带宽有限的系统。带宽有限的系统需要双二进制PAM4均衡器滤波器,而正交化在这里是不可能的。

在最后的分析中,这篇文章中的所有测试案例都确定三阶沃尔泰拉滤波器足够用于实现城域网和数据中心网络市场中的低成本112Gbps PAM4接收器

112G看起来正在很好地成熟,这一天也早该来了,因为云数据中心正在全球范围内成倍增长。在OFC 2018展会上,Credo展示了他们的112G PAM4产品

高速度和低功耗将是这一领域的主导动力,我相信未来几年在这两方面都能看到更多创新的技术出现。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    158

    文章

    7314

    浏览量

    174707
  • pam4
    +关注

    关注

    2

    文章

    34

    浏览量

    14317

原文标题:112G PAM4在云数据中心兴起

文章出处:【微信号:gh_bee81f890fc1,微信公众号:面包板社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    高速板材为什么贵?单看这一点你们就明白了!

    的基频速率,14GHz可以对应25G的nrz信号,也因为对应搭配56Gpam4信号。而28GHz则对应目前比较top的112G的应用了。 如果觉得无源的损耗也不是很直观的话,那我们把
    发表于 04-09 10:43

    AMD硅芯片设计中112G PAM4串扰优化分析

    在当前高速设计中,主流的还是PAM4的设计,包括当前的56G,112G以及接下来的224G依然还是这样。突破摩尔定律2.5D和3D芯片的设计又给高密度高速率芯片设计带来了空间。
    发表于 03-11 14:39 146次阅读
    AMD硅芯片设计中<b class='flag-5'>112G</b> <b class='flag-5'>PAM4</b>串扰优化分析

    如何克服PAM4调制的仿真挑战呢?

    随着5G网络的发展,不断扩大的带宽需求要求单位时间内传输更多的逻辑信息,PAM4信号技术以其较高的传输效率和较低的建设成本成为下一代高速信号互连的热门信号传输技术。
    的头像 发表于 01-03 15:36 602次阅读
    如何克服<b class='flag-5'>PAM4</b>调制的仿真挑战呢?

    pam4和nrz区别

    在通信领域中,数字调制技术是实现高速数据传输的关键。主流的数字调制技术包括脉冲振幅调制(PAM)和非返回零(NRZ)调制。本文将详细解释PAM-4(四进制脉冲振幅调制)与NRZ(非返回零)编码的区别
    的头像 发表于 12-29 10:05 1529次阅读

    高速 112G 设计和通道运行裕度

    高速 112G 设计和通道运行裕度
    的头像 发表于 12-05 14:24 347次阅读
    高速 <b class='flag-5'>112G</b> 设计和通道运行裕度

    自动化建模和优化112G封装过孔 ——封装Core层过孔和BGA焊盘区域的阻抗优化

    自动化建模和优化112G封装过孔 ——封装Core层过孔和BGA焊盘区域的阻抗优化
    的头像 发表于 11-29 15:19 217次阅读
    自动化建模和优化<b class='flag-5'>112G</b>封装过孔 ——封装Core层过孔和BGA焊盘区域的阻抗优化

    PAM4与硅光技术塑造800G创新

    800G技术的发展,PAM4与硅光技术起到了推动作用。这两项技术在实现更高带宽、更快数据传输速度和更高密度的网络通信中发挥了至关重要的作用。本文将深入探讨这两项关键技术,以及它们如何共同推动了800G技术的快速发展。
    的头像 发表于 11-02 14:24 270次阅读
    <b class='flag-5'>PAM4</b>与硅光技术塑造800G创新

    PAM4与硅光技术如何共同推动800G技术的快速发展

    800G技术的发展,PAM4与硅光技术起到了推动作用。这两项技术在实现更高带宽、更快数据传输速度和更高密度的网络通信中发挥了至关重要的作用。本文将深入探讨这两项关键技术,以及它们如何共同推动
    的头像 发表于 11-02 09:40 332次阅读

    400G QSFP112—助力IDC数据中心升级

    ,400G光模块有56G PAM4112G PAM4两种调制方案,本文态路为您介绍112G PAM4(400G QSFP
    的头像 发表于 10-20 09:49 373次阅读
    400G QSFP<b class='flag-5'>112</b>—助力IDC数据中心升级

    5纳米 PAM4 DSP 封装集成VCSEL驱动器

    KeystoneMM是MaxLinear的PAM4 DSP,集成了用于800G和400G多模短距离光模块和有源光缆的VCSEL驱动器。5 纳米 CMOS 器件可降低数据中心和 AI/ML 集群中使
    的头像 发表于 10-13 16:27 814次阅读

    深井中的深度学习:MCU+AI,让“不可能”的田园机井智能抄表成为可能

    深井中的深度学习:MCU+AI,让“不可能”的田园机井智能抄表成为可能
    的头像 发表于 09-21 17:41 536次阅读
    深井中的深度学习:MCU+AI,让“不<b class='flag-5'>可能</b>”的田园机井智能抄表<b class='flag-5'>成为可能</b>!

    CIOE参展手札 | Samtec 224Gbps PAM4性能演示精彩亮相

    【摘要/前言】 为高速速率(56/112Gbps PAM4) 进行设计,并不容易, 尤其是更高的224Gbps速率! 值得庆幸的是, Samtec 与合作伙伴Keysight已经走在了前沿
    发表于 09-07 18:29 300次阅读
    CIOE参展手札 | Samtec 224Gbps <b class='flag-5'>PAM4</b>性能演示精彩亮相

    112G 高速I/O互连产品,为数字化转型加速

    (以下简称“TE”)一直都在。近期 TE 再推新品-QSFP 112G 1xSMT 连接器与笼,进一步助力您的快速数据传输需求! 新品系列概览 该产品系列在设计上支持 112G-PAM4 信号调制,每端口总数据速率可达 400 Gbps,具有信号完整性、高密度性和卓越散热
    的头像 发表于 09-04 12:56 334次阅读

    模拟PAM4芯片组提供DSP级性能,无需牺牲超大规模数据中心

    避免DSP的7nm开发成本消除了BOM成本障碍。使用传统的发射器和接收器架构,可以使用简单的制造技术快速增加产量。使用Maxim芯片组的200G模块的功耗与100G CWDM4模块相似。因此,解决了采用PAM4的成本,功率和可制造性障碍。但是,这仅在解决方案具有强大的技术
    的头像 发表于 06-28 11:23 962次阅读

    多重原因促使PCIe®6.0采用了PAM4

    Samtec成为PCI-SIG社区的成员已经有很多年了,我们非常自豪。Samtec的高级系统架构师Jignesh Shah与PCI-SIG的伙伴们一起,讨论了PAM4编码,这是PCIe 6.0规范的一个新功能。
    的头像 发表于 05-10 11:25 1291次阅读
    多重原因促使PCIe®6.0采用了<b class='flag-5'>PAM4</b>