侵权投诉

一文看懂CAN总线

设计idea 2018-06-13 11:16 次阅读

前言

CAN总线的应用在现在看来越来越广泛,我厂设备从最初的ARM9与ARM7平台、期间升级过度到CortexA8与Cortex M3平台,再到现在的Cortex M4平台,围绕CAN进行了一系列产品的开发,CAN总线的稳定性是毋庸置疑的。

CAN总线物理结构与特性

CAN总线网络

CAN总线网络主要挂在CAN_H和CAN_L,各个节点通过这两条线实现信号的串行差分传输,为了避免信号的反射和干扰,还需要在CAN_H和CAN_L之间接上120欧姆的终端电阻,但是为什么是120欧姆呢?那是因为电缆的特性阻抗为120欧

CAN收发器

CAN收发器的作用是负责逻辑电平和信号电平之间的转换。

即从CAN控制芯片输出逻辑电平到CAN收发器,然后经过CAN收发器内部转换将逻辑电平转换为差分信号输出到CAN总线上,CAN总线上的节点都可以决定自己是否需要总线上的数据。具体的管教定义如下:

信号表示

CAN总线采用不归零码位填充技术,也就是说CAN总线上的信号有两种不同的信号状态,分别是显性的(Dominant)逻辑0和隐形的(recessive)逻辑1,信号每一次传输完后不需要返回到逻辑0(显性)的电平。

位填充规则发送器只要检测到位流里有5个连续相同值的位,便自动在位流里插入补充位。

观察下图:

可以看到上图中的当第一段为隐性(recessive),CAN_H和CAN_L电平几乎一样,也就是说CAN_H和CAN_L电平很接近甚至相等的时候,总线表现隐性的,而两线点位差较大时表现为显性的,按照定义的:

  • CAN_H-CAN_L < 0.5V 时候为隐性的,逻辑信号表现为"逻辑1"- 高电平。

  • CAN_H-CAN_L > 0.9V 时候为显性的,逻辑信号表现为"逻辑0"- 低电平。

下面将差分信号和显隐性之间对应关系总结为下表:

状态

逻辑信号

电压范围

显性Dominant

0

CAN_H-CAN_L > 0.9

隐性recessive

1

CAN_H-CAN_L < 0.5

由上面的分析我们可以知道:

CAN总线采用的"线与"的规则进行总线冲裁。即1&0=0;所以0为显性。

这句话隐含的意思是,如果总线上只要有一个节点将总线拉到低电平(逻辑0)即显性状态,总线就为低电平(逻辑0)即显性状态而不管总线上有多少节点处于传输隐性状态(高电平或是逻辑1),只有所有节点都为高(隐性),总线才为高,即隐性。

通讯速率与通讯距离

下面的SAE J2411为美国汽车标准。

类型

标准

最高速率

描述

高速CAN

CAN/ISO 11839-2

1Mbit/秒

最通用的CAN总线类型

低速CAN

ISO/ISO 11839-3

125Kbit/秒

容错,在一条总线短路的时候仍然能工作

单线CAN

SAE J2411

50Kbit/秒

高速模式可达到100Kbit/s主要用在汽车上,例如通用公司

CAN总线上任意两个节点的最大传输距离与其位速率有关,如下表:

位速率/kbps

1000

500

250

125

100

50

20

10

5

最大距离/m

40

130

270

530

620

1300

3300

6700

10000

这里的最大通信距离指的是同一条总线上两个节点之间的距离。可以看到速率越低通讯距离就越远,也就是说CAN总线的通讯距离和波特率成反比。在位速率为5千比特位每秒的时候达到最大的传输距离10公里。其中一般的工程中比较常用的为500K每秒的通讯速率。这个速率在实际测试的时候也是非常可靠的。

如果想要更远的传输(大于10公里);可以考虑用多个CAN控制器连接或是加其他通讯协议(如485或是TCP/IP)的接口芯片组成的一个设备,这样就可实现长距离的通讯需求。

CAN总线关键概念

仲裁

只要总线空闲,总线上任何节点都可以发送报文,如果有两个或两个以上的节点开始传送报文,那么就会存在总线访问冲突的可能。但是CAN使用了标识符的逐位仲裁方法可以解决这个问题。

在仲裁期间,每一个发送器都对发送的电平与被监控的总线电平进行比较。如果电平相同,则这个单元可以继续发送。如果发送的是一"隐性"电平而监视到的是一"显性"电平,那么这个节点失去了仲裁,必须退出发送状态。如果出现不匹配的位不是在仲裁期间则产生错误事件。

帧ID越小,优先级越高。由于数据帧的RTR位为显性电平,远程帧为隐性电平,所以帧格式和帧ID相同的情况下,数据帧优先于远程帧;由于标准帧的IDE位为显性电平,扩展帧的IDE位为隐形电平,对于前11位ID相同的标准帧和扩展帧,标准帧优先级比扩展帧高

CAN总线协议

CAN 总线是一个广播类型的总线,所以任何在总线上的节点都可以监听总线上传输的数据。也就是说总线上的传输不是点到点的,而是一点对多点的传输,这里多点的意思是总线上所有的节点。但是总线上的节点如何知道那些数据是传送给自己的呢?CAN总线的硬件芯片提供了一种叫做本地过滤的功能,通过这种本地过滤的功能可以过滤掉一些和自己无关的数据,而保留一些和自己有关的信息

CAN消息机制

CAN标准定义了四种消息类型,每条消息用一种叫做比特位仲裁(Arbitration)机制来控制进入CAN总线,并且每条消息都标记了优先权。另外CAN标准还定义了一系列的错误处理机制。

CAN报文的四种消息类型:

  • 数据帧:数据帧将数据从发送器传输到接收器。

  • 远程帧:总线单元发出远程帧,请求发送具有同一标识符的数据帧。

  • 错误帧:任何单元检测到总线错误就发出错误帧。

  • 过载帧:过载帧用在相邻数据帧或远程帧之间的提供附加的延时。

数据帧

下图为基本的格式:

CAN总线中有标准帧和扩展帧两种格式,两种格式不同的地方在于仲裁域格式的不同,看下面两个表格可以很清楚的看出两者的不同,下面第一个表是标准帧(CAN2.0 A),第二个为扩展帧(CAN2.0 B):

下面为扩展帧格式(CAN2.0B):

其中

  • SOF为帧开始

  • SRR为"替代远程请求位

  • IDE为扩展标识符位

  • RTR为远程传输请求位

  • CRC delimiter 为CRC定界符。

  • ACK delimiter 为应答定界符.

我们看到上图中的基本帧格式可以总结为以下几个域:

描述

仲裁域

仲裁域决定了当总线上两个或是多个节点争夺总线时的优先权。

数据域

包含了0到8字节的数据。

CRC域

包含了15位的校验和,校验和用来做错误检测。

应答槽

任何一个已经正确接收到消息的控制器在每一条消息的末端发送一个应答位,发送器检查消息是否存在应答位,如果没有就重发消息。

远程帧

作为数据接收器的站,通过发送远程帧,可以启动其资源节点传送它们各自的数据。远程帧和数据帧非常类似,只是远程帧没有数据域。

上图就是远程帧的帧格式,它相对与数据帧没有远程帧,但是要注意发送远程帧的时候RTR位要置1,表示发送的是远程帧。下图更加清晰了呈现了这种结构。

错误帧

错误帧是当总线的某一个节点检测到错误后发送出来的,它会引起所有节点检测到一个错误,所以当有任何一个节点检测到错误,总线上的其他节点也会发出错误帧。CAN总线设计了一套详尽的错误计数机制来确保不会由于任何一个节点反复的发送错误帧而导致CAN总线的崩溃。

如上图所示错误标志和错误定界符组成,高低代表分别代表隐性和显性,其中错误标志为所有节点发过来的错误标志的叠加(Superposition)。下图更为清楚的看出各个数据位的分布:

下面通过以下数据结构框图概括各个部分的定义:

错误标志有两种形式:

  • 主动错误标志,它由6个连续的显性位0组成,它是节点主动发送的错误标志。

  • 被动错误标志,它由6个连续的隐性位1组成,除非被其他节点的显性位覆盖。

    刚才说到一个节点上检测到错误会导致总线上所有的节点都会检测到错误并发送错误标志,这是为什么呢?

    因为单一节点上的错误标志格式违背了从帧起始到CRC界定符的位填充规则,也破坏了ACK域或帧结尾的固定格式。下面简要说下位填充规则。

    位填充规则:发送器只要检测到位流里有5个连续相同值的位,便自动在位流里插入补充位。

    注意:位填充规则只是针对数据帧和远程帧,错误帧和过载帧格式固定。

    所以所有其他的节点会检测到错误条件并且开始发送错误标志,因此错误帧就是各个站的不同错误标志叠加在一起的结果。

当某个节点发送错误帧(带有错误标志),其他节点收到了错误帧,检测到错误条件,就通过发送"被动错误标志"的错误帧来提示错误。

错误定界符:

传送了错误标志以后,每一个站就发送一个隐性位,并一直监视总线直到检测出一个隐性位为止,然后就开始发送其余7个隐性位。

过载帧

过载帧是接收节点用来向发送节点告知自身接收能力的帧。

过载帧,意思就是某个接收节点来不及处理数据了,希望其他节点慢点发送数据帧或者远程帧,所以告诉发送节点,我已经没有能力处理你发送过来的数据了。

过载帧跟错误帧结构类似包括过载标志和过载定界符,有3中情况会引起过载:

  • 接收器内部的原因,它需要延迟下一个数据帧或是远程帧。

  • 在间歇字段(看下面的帧间空间)的第一位和第二位检测到一个显性位(间歇字段都是隐性位的)

  • 如果CAN节点在错误界定符或是过载界定符的第八位(最后一位)采样到一个显性位逻辑0,节点会发送一个过载帧,错误计数器不会增加。

上图中很清晰的表示了过载标志有6个显性位组成,而叠加部分和"主动错误"标志一样,过载的标志破坏的是间歇域的固定格式。所以导致其他的节点都检测到过载条件,并一同发出过载标志。

过载定界符:

也就是上图的过载结束符,过载标志被传送以后,节点就一直监听着总线,直到检测到有一个从显性位到隐性位的跳变为止。当从总线上检测到这样的跳变,则就标志着每一个节点都完成了各自过载标志的发送,并开始同时发送其余7个隐性位。

帧间空间(Interframe Space)

帧间空间说白了就是帧与帧之间的间隔,但是这种间隔在CAN的帧中只存在于数据帧和远程帧,其他的帧就不一定是帧间空间隔开的,而是其他形式,或是直接是没有间隔,例如过载帧和错误帧之间就没帧间空间。过个过载帧之间有间隔但是不是有帧间空间隔开的。

这里所说的针间空间包括"间歇"、"总线空闲"的位域。如果是发送前一报文的"被动错误"的站,则还包括叫做"挂起传输"的位域。

若不是"被动错误"的站,或作为前一报文的接收器的站,帧间空间格式为下图:

若是"被动错误"的站,如果想要发送8个隐性电平,在发送其他帧,帧间空间格式为下图,即包括了挂起传输,

可以看到

间歇字段有3个隐性位。

特别的在间歇期间,所有的节点都不允许传送数据帧和远程帧,唯一看做的是标示一个过载条件。

总线空闲

只要总线空闲,任何节点就可以往总线发送数据,并且是开始于间歇之后的第一个位。一旦总线上检测到显性位即逻辑"0",可以认为是帧的开始。

  1. 挂起传输

"被动错误"的节点发送报文之后,在下一个报文开始传送之前或是确认总线空闲之前发出8个隐性位跟随在间歇的后面。如果这个时候有一个报文从其他的节点发过来,则这个节点就成为了接收器。

错误处理机制

错误侦测

下标是几个错误类型:

错误类型

出错条件

出错域

帧测单元

比特错误

bit error

发送的位值与所监控的位值不相符合(填充比特和ACK比特除外)

数据帧(SOF~EOF)

远程帧(SOF~EOF)

错误帧

过载帧

发送单元

接收单元

填充错误stuff error

侦测到6个连续相同的电平

数据帧(SOF~CRC)

远程帧(SOF~CRC)

发送单元

接收单元

CRC 错误

计算结果和接收到的CRC不同

数据帧(CRC)

远程帧(CRC)

接收单元

格式错误

Form Error

某个固定的格式位置出现无效的比特

数据帧:

(CRC Delimiter, ACK Delimiter EOF)

远程帧:

(CRC Delimiter,ACK Delimiter)

错误帧:

(Error Frame Delimiter)

过载帧:

(Overload Delimiter)

接收单元

应答错误

Acknowledgment

发送端在应答间隙所监视的位不为显性,即逻辑0,发送器就检测到一个应答错误。

数据帧(ACK slot)

远程帧(ACK slot)

发送单元

错误计数

下面是错误计数表:


错误条件

Transmit Error Counter

Receive Error Counter

1

RECEIVER端侦测到一个位Error错误,除了发送ACTIVE ERROR FLAG 和OVERLOAD FLAG

-

+1

2

TRANSMITIER 发送ERROR FLAG

+8


3

TRANSMITTER发送ACTIVE ERROR FLAG OVERFLAG时侦测到BIT ERROR

+8


4

当RECEIVER发送ACTIVE ERROR FLAG或OVERFLAG时侦测到BIT ERROR

+8


5

一个帧被成功发送之后(取得ACK并且知道END OF FRAME完成都没有错误)

-1 IF TEC=0,TEC will not be changed

-

6

一个帧被成功接收(知道ACK域都没有检测到错误,并成功发送ACK比特)

-

1. if 1 <= REC <= 127 -> REC-1

2. if REC = 0 -> REC = 0

3. if REC > 127 -> REC = a value

Between 119 to 127

7

在总线上检测到128此连续的11个1,"bus off"的节点允许变成不再是"bus off"

Cleared to TEC = 0

Cleared to REC = 0

错误抑制

为防止某些节点自身出错而一直发送错误帧,干扰其他节点通信,CAN协议规定了节点的3种状态及行为,如下图:

一个节点挂到CAN总线上之后,处于ACTIVE状态;TEC>127或者REC>127导致节点进入passive状态;TEC>255之后节点处于bus off状态,就是不允许再往bus上发送东西了;处于bus off状态的节点,在检测到128个连续的11个1之后将回到active状态。

收藏 人收藏
分享:

评论

相关推荐

【PCAN工程机械应用系列】虹科PCAN在石油工程行业的应用

点击上方蓝字关注我们01应用背景在石油钻井作业中,井队管理人员、技术人员和司钻及时了解泥浆参数、绞车....
的头像 莫金妙 发表于 09-17 17:34 18次 阅读
【PCAN工程机械应用系列】虹科PCAN在石油工程行业的应用

PCB板上三个CAN节点模拟485的主从通信

CAN总线, 这是我毕设的最后一部分, 截至到今天晚上, 硬件部分已完成,软件完成有90%。PCB板老师已经拿去加工, 后天估计可以...
发表于 09-17 09:02 0次 阅读

大联大品佳集团推出基于Microchip、onsemi和OSRAM产品的CAN/LIN通讯矩阵式大灯解决方案

大联大控股宣布,其旗下品佳推出基于微芯科技(Microchip)PIC16F1779、安森美(ons....
发表于 09-15 15:11 612次 阅读
大联大品佳集团推出基于Microchip、onsemi和OSRAM产品的CAN/LIN通讯矩阵式大灯解决方案

12个关节到控制器的是如何通信的

前几天小米的铁蛋,又让四足机器人火了一把。9999一台,这个价钱还挺香的。众所周知,国内的大部分四足机器狗的涌出,都是因为20...
发表于 09-15 07:28 0次 阅读

迅为i.MX6Q开发板Ubuntu20.04 Can通信

开发平台:i.MX6Q开发板 1 硬件连接 作者测试 can,使用的是两块 iTOP-iMX6 开发板。板子是 can 的+连接+,-连...
发表于 09-14 14:26 101次 阅读

CAN报文定义

1. CAN报文定义CAN报文是指发送单元向接受单元传送数据的帧。我们通常所说的CAN报文是指在CAN线(内部CAN、整车C...
发表于 09-14 09:23 0次 阅读

CAN总线的终端电阻

文章目录一.前言二. SN65HVD230三. 实战应用电路3.1 应用电路3.2 Rs 引脚(PIN8)3.3 CAN总线的终端电阻四.芯片价格...
发表于 09-14 07:18 0次 阅读

求助电路设计问题,关于电阻串电容作用?

求助各位大佬,CAN总线设计电路中输出差分信号,其中电阻串电容作用是什么呢? 电阻作用好像是阻抗匹配,串联电容接地是为什...
发表于 09-13 16:27 222次 阅读
求助电路设计问题,关于电阻串电容作用?

CAN线问题

使用CAN通讯时,已经在can芯片两线之间加上120欧电阻后,还需要用120欧的双绞线吗? ...
发表于 09-13 11:17 122次 阅读

CAN现场总线定义OSI网络模型

  CAN现场总线只定义了OSI网络模型的第一层(物理层) 和第二层(数据链路层) ,而这两层一般已被CAN硬件完全实现了。由...
发表于 09-09 09:11 0次 阅读

怎样去开发一种基于CAN总线的电动汽车电机驱动系统测试平台

设备组成Etest_CPS系统主要由硬件部分与软件部分组成。硬件部分由PCI机箱、PCI控制器以及各种PCI接口板卡组成。软件...
发表于 09-08 06:30 0次 阅读

浅析奥迪电池管理系统

前段时间向公众号“汽车ECU开发”运营的吴飞兄弟要了奥迪E-tron的一些资料,涉及的比较细,我觉得....
的头像 汽车电子设计 发表于 09-06 15:06 507次 阅读

基于恩智浦MPC5744P的CAN驱动开发和测试

摘要 本篇笔记主要记录基于恩智浦MPC5744P的CAN驱动开发和测试,接口设计,封装为BSP驱动,....
的头像 嵌入式程序猿 发表于 09-03 11:35 256次 阅读
基于恩智浦MPC5744P的CAN驱动开发和测试

一文了解CAN总线(概述/特点/结构/原理/采样点设置)

CAN的中文是控制局域网(Controller Area Network),与1986年由德国Bos....
发表于 09-02 09:55 427次 阅读

CAN节点一致性测试究竟有多重要

CAN一致性测试在于缩小CAN总线节点间的差异,提高总线抗干扰能力,从而保障设备CAN网络系统的稳定....
的头像 Qorvo半导体 发表于 08-23 11:03 1291次 阅读

为什么PCAN-USB FD能够支持8Mbit/s或者最大的12Mbit/s

在使用我们虹科的PCAN-USB FD(IPEH-004022),客户会有下面的疑问。PCAN-US....
的头像 OPPOstory 发表于 08-23 09:54 243次 阅读
为什么PCAN-USB FD能够支持8Mbit/s或者最大的12Mbit/s

德赛西威黄震分享对信息安全的研究进展和汽车信息安全路线的看法

德赛西威承办单位的大湾区汽车创新论坛暨新能源汽车重大专项申报培训会以线上结合线下的形式举办。 此次论....
的头像 东软集团 发表于 08-18 14:49 2262次 阅读

传统架构及联合电子新一代整车计算平台VCP的分析

随着汽车电动化、智能化、网联化、共享化的技术变革,车辆承载的功能愈发复杂,随之而来的负责单一功能的电....
的头像 联想中国 发表于 08-18 09:39 333次 阅读

CAN-bus总线在冷链运输中的应用

在这疫情大环境下,对疫苗的低温存储以及冷链运输提出了更高的要求,那么,如何快速实现疫苗冷链运输的实时....
的头像 Qorvo半导体 发表于 08-16 15:05 273次 阅读
CAN-bus总线在冷链运输中的应用

纯电动汽车动力总成试验台测控系统解决方案

本期上海研强给大家分享的是工控机在纯电动汽车动力总成试验台测控系统的解决方案,希望看完本篇文章您能对....
发表于 08-13 16:38 115次 阅读

控制器局域网CAN概述、优势及特点

控制器局域网 (Controller Area Network,简称CAN或者CAN bus) 是一....
发表于 08-12 11:16 169次 阅读

以STM8为例的CAN滤波器内容

前言在CAN协议里,报文的标识符不代表节点的地址,而是跟报文的内容相关的。因此,发送者以广播的形式把....
的头像 奈因PCB电路板设计 发表于 08-11 11:06 3408次 阅读

虹科CAN记录仪应用案例

1 CAN简介 CAN,是ISO国际标准化的串行通信协议,即Controller Area Netw....
的头像 OPPOstory 发表于 08-10 10:13 310次 阅读
虹科CAN记录仪应用案例

can总线工作原理是什么

CAN是一种用于实时应用的串行通讯协议总线,CAN能够使用双绞线来传输信号,是国际上应用最广泛的现场....
的头像 璟琰乀 发表于 08-07 17:07 1987次 阅读

CAN总线是什么意思

CAN总线是什么意思 CAN的全称是Controller Area Network,中文名称是控制器....
的头像 璟琰乀 发表于 08-07 16:37 1278次 阅读

基于嵌入式Linux的以太网与CAN和MBUS两种现场总线的通信网关设计

基于嵌入式Linux的以太网与CAN和MBUS两种现场总线的通信网关设计(嵌入式开发工作怎么这么难找....
发表于 08-04 13:56 49次 阅读
基于嵌入式Linux的以太网与CAN和MBUS两种现场总线的通信网关设计

探究CAN-bus总线的四种安全保障技能

CAN总线因强大的抗干扰和纠错重发机制,被广泛应用于新能源汽车、轨道交通、医疗、煤矿、电机驱动等行业....
的头像 Qorvo半导体 发表于 08-04 10:25 268次 阅读

CAN总线发展与其他总线的比较综述

CAN总线发展与其他总线的比较综述
发表于 08-02 10:40 74次 阅读

芯力特5Mbps CAN FD收发器芯片SIT1044

芯力特自主研发SIT1044芯片是一款应用于CAN协议控制器和物理总线之间的高性能CAN FD收发器....
发表于 08-02 09:25 1238次 阅读
芯力特5Mbps CAN FD收发器芯片SIT1044

沈阳广成科技双通道CAN总线数据存储器-GCAN-402--用户手册

沈阳广成科技双通道CAN总线数据存储器-GCAN-402--用户手册(linux 嵌入式开发流程)-....
发表于 07-30 10:08 51次 阅读
沈阳广成科技双通道CAN总线数据存储器-GCAN-402--用户手册

基于STM32单片机和MCP2515的CAN通讯

基于STM32单片机和MCP2515的CAN通讯
发表于 07-18 10:52 131次 阅读

CAN总线RS485的区别

RS485和CAN总线都是工业总线系统,即工业控制通信系统 ,CAN 是 Controller Ar....
的头像 Les 发表于 07-12 14:40 733次 阅读

CAN总线接口EMC标准电路设计方案

CAN总线接口EMC标准电路设计方案
发表于 07-12 10:45 211次 阅读

CAN总线调试工具QCOM_V1.6软件下载

CAN总线调试工具QCOM_V1.6软件下载
发表于 07-06 10:30 122次 阅读

新一代全光纤工业传输控制网采用了哪些关键技术?

目前全球和中国市场上,工业控制网络主要采用CAN和工业以太网(Industrial Ethernet....
的头像 汽车玩家 发表于 07-04 16:19 498次 阅读
新一代全光纤工业传输控制网采用了哪些关键技术?

基于多STM32和CAN总线的分布式电动护理床控制

基于多STM32和CAN总线的分布式电动护理床控制
发表于 06-30 15:15 96次 阅读

Anybus无线堡CAN:通过Wi-Fi或蓝牙进行CAN通信

可用于CAN通信的全新Anybus无线堡使基于CAN的重型机械和应用能够通过强大的无线链路传输CAN....
发表于 06-28 15:29 4204次 阅读
Anybus无线堡CAN:通过Wi-Fi或蓝牙进行CAN通信

控制器局域网总线(CAN总线)在电子系统中有何作用?

毫不夸张地说,互联互通是我们所有日常技术能够发挥作用的命脉,并延伸到我们汽车内部的连接。
的头像 Imagination Tech 发表于 06-26 14:10 397次 阅读

基于DSP实现多帧数据准确通信系统的设计

针对系统通信可靠、实时性的要求,在交直流埋弧焊接通信控制中,提出了一种基于DSP的CAN总线通信控制....
的头像 电子设计 发表于 06-24 15:47 482次 阅读
基于DSP实现多帧数据准确通信系统的设计

采用TMS320F2812内嵌eCAN模块实现GMAW焊机监控系统的设计

采用CAN总线实现GMAW焊接电源、行走机构及遥控盒间的网络连接,并连接到上位机,方便实现焊接过程质....
的头像 电子设计 发表于 06-24 15:43 366次 阅读
采用TMS320F2812内嵌eCAN模块实现GMAW焊机监控系统的设计

基于MCP2510 CAN控制器实现CAN总线系统智能节点的设计

MCP2510是Microchip公司生产的一种独立的可编程CAN控制器芯片。本文将介绍新型的独立C....
的头像 电子设计 发表于 06-23 15:16 447次 阅读
基于MCP2510 CAN控制器实现CAN总线系统智能节点的设计

CAN总线在客车电路设计中的应用综述

CAN总线在客车电路设计中的应用综述
发表于 06-17 09:39 145次 阅读

TD_CAN隔离收发模块应用指南

  CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 IS....
发表于 06-15 14:14 77次 阅读

简要分析支持CAN FD的一个温度采集模块

随着CAN FD应用的越来越广泛,PCAN也在不断的进行着更新换代。
的头像 电子发烧友网工程师 发表于 06-11 14:18 474次 阅读
简要分析支持CAN FD的一个温度采集模块

基于DS89C430单片机和XC95144CPLD芯片实现多通道CAN模拟器的设计

  CAN总线与一般的串行通信总线相比,它的数据通信具有可靠性高,实时性高,灵活性强等优点,不仅广泛....
的头像 电子设计 发表于 06-10 14:04 422次 阅读
基于DS89C430单片机和XC95144CPLD芯片实现多通道CAN模拟器的设计

一种简单而高效的QoS机制:IEEE802.1Q下的预整形机制

1.案例背景汽车工业正在迅速向以太网作为车载通信的高速通信网络发展,因此这需要超出传统以太网且必须提....
的头像 电子发烧友网工程师 发表于 06-09 16:15 408次 阅读
一种简单而高效的QoS机制:IEEE802.1Q下的预整形机制

基于LPC2294控制器的CAN总线网状冗余节点方案

  CAN(Controller Area Network)即控制器局域网,是一种串行数据总线,CA....
的头像 电子设计 发表于 06-08 14:36 416次 阅读
基于LPC2294控制器的CAN总线网状冗余节点方案

CAN底层驱动数据的传输需要注意什么

现在CAN通讯可以说是得到了越来越多的应用,从汽车到工业,到农业等等行业和产品都在使用,而CAN通信....
的头像 嵌入式程序猿 发表于 06-04 14:49 547次 阅读
CAN底层驱动数据的传输需要注意什么

汽车常用ISO15765协议解析

汽车常用ISO15765协议解析说明。
发表于 06-02 10:04 160次 阅读

探究有为信息王牌单品一体化智能视频监控终端K5-P

K5-P是一款高度集成,采用最新技术研发的新一代车载主动安全智能视频终端,可采集行车过程中的车辆状态....
的头像 深圳市汽车电子行业协会 发表于 05-31 11:06 863次 阅读

ZLG致远电子推出ZPS-CANFD总线分析测试平台助力汽车工业

随着智能汽车和工业智造的发展,CANFD逐渐成为汽车电子、工业通讯的核心技术。为更好赋能行业伙伴应用....
的头像 ZLG致远电子 发表于 05-28 15:36 549次 阅读

CAN系统中信号终端电阻常见问题及解决方法

CAN系统中信号终端电阻常见问题及解决方法
发表于 05-28 10:20 255次 阅读

简述ARM微处理器的隧道照明智能控制器

采用ARM7TDMI-S 内核 的微处理器LPC2119设计实现智能照明控制器,应用在高速公路隧道照....
的头像 电子发烧友网工程师 发表于 05-26 15:25 422次 阅读
简述ARM微处理器的隧道照明智能控制器

剖析SOA对整车E/E架构的挑战

前言: 随着汽车朝着“新四化”的趋势发展,客户对车辆功能的心里预期也悄然发生着改变。汽车在迈向更高等....
的头像 汽车工程师 发表于 05-25 14:41 835次 阅读
剖析SOA对整车E/E架构的挑战

基于CAN总线和单片机的应用方案和分析

该网络最高通信速率为1Mbit/s ,当传输速率为5Kbit/s时,最大通信距离可达10Km。在其C....
的头像 电子设计 发表于 05-25 09:54 466次 阅读
基于CAN总线和单片机的应用方案和分析

基于虹科PCAN-PCI卡实现CT医疗设备的数据采集与装置控制

基于虹科PCAN-PCI卡实现CT医疗设备的数据采集与装置控制  传统CT医疗设备各控制部件之间的信....
的头像 电子发烧友网工程师 发表于 05-24 09:23 518次 阅读
基于虹科PCAN-PCI卡实现CT医疗设备的数据采集与装置控制

NUP3125 SC-70的32V双线CAN总线保护器(SOT-323)

UP3125旨在保护商用车辆中常见的24 V设计中的CAN收发器免受ESD和其他有害浪涌保护事件的影响。该器件采用单个紧凑型SC-70(SOT-323)封装,为每条数据线提供双向保护,为系统设计人员提供了低成本选择,可提高系统可靠性并满足严格的EMI要求。 特性 优势 每线120 W峰值功耗(8 /20μs波形) 确保高器件级浪涌可生存性 10 pF二极管电容匹配的总体电容 帮助维持CAN-FD的数据线信号完整性 低反向漏电流(...
发表于 08-05 08:02 355次 阅读

NUP3105L 采用SOT-23封装的32V双线CAN总线保护器

UP3105旨在保护商用车辆中常见的24 V设计中的CAN收发器免受ESD和其他有害浪涌保护事件的影响。该器件采用单个SOT-23封装,为每条数据线提供双向保护,为系统设计人员提供了低成本选择,可提高系统可靠性并满足严格的EMI要求。 特性 优势 350 W峰值功率每行耗散(8 /20μs波形) 确保高器件级浪涌可生存性 低反向漏电流(
发表于 08-05 07:02 413次 阅读

NUP2105 CAN总线保护器 双线

双向双向设计适用于需要电压保护功能的应用。它适用于过压和ESD敏感设备。该器件采用双结共阴极配置,旨在保护两条独立的线路。 特性 SOT-23 pacakage允许两个单独的双向配置 每行350 W峰值功耗(8x20 us波形) 低反向漏电流(
发表于 08-05 05:02 435次 阅读
NUP2105 CAN总线保护器 双线

TCAN4550 TCAN4550

TCAN4550是一款CAN FD控制器,集成了CAN FD收发器,支持高达5 Mbps的数据速率。 CAN FD控制器符合ISO11898-1:2015高速控制器局域网(CAN)数据链路层的规范,符合ISO11898-2:2016高速CAN规范的物理层要求。 TCAN4550通过串行外设接口(SPI)在CAN总线和系统进程之间提供接口,支持经典CAN和CAN FD。 TCAN4550提供CAN FD收发器功能:总线的差分传输能力和总线的差分接收能力。该器件支持通过本地唤醒(LWU)唤醒和使用实现ISO11898-2:2016唤醒模式(WUP)的CAN总线唤醒总线。 该器件具有许多保护功能,可提供器件和CAN总线的稳健性。这些功能包括故障保护模式,内部显性状态超时,宽总线工作范围和超时看门狗等。 特性 带有集成CAN收发器和串行外设接口(SPI)的CAN FD控制器 CAN FD控制器支持ISO 11898- 1:2015和博世M_CAN修订版3.2.1.1 符合ISO 11898-2:2016的要求 CAN FD数据速率高达5 Mbps,最高18 MHz SPI时钟速度 经典CAN向后兼容 工作模式:正常,待机,休眠和故障保护可用: 3.3 V至5 V输入/输出逻辑支持微处理器 CAN...
发表于 01-08 17:50 1557次 阅读
TCAN4550 TCAN4550

SN55HVD233-SEP 采用增强型航天塑料封装且具有待机模式的耐辐射 3.3V CAN 收发器

SN55HVD233-SEP用于采用符合ISO 11898标准的控制器局域网(CAN)串行通信物理层的应用中。作为CAN收发器,该器件在差分CAN总线和CAN控制器之间提供发送和接收功能,信号速率高达1 Mbps。 SN55HVD233-SEP功能设计用于在特别恶劣的辐射环境中工作电线,过压,接地保护损耗至±16 V,以及过热(热关断)保护。该器件可在-7V至12V的共模范围内工作。此收发器是微处理器,FPGA或ASIC上的主机CAN控制器与卫星应用中使用的差分CAN总线之间的接口。 模式:R S ,引脚8 SN55HVD233-SEP提供三种操作模式:高速,斜率控制或低功耗待机模式。用户通过将引脚8直接接地来选择高速工作模式,允许驱动器输出晶体管尽可能快地接通和断开,不受上升和下降斜率的限制。用户可以通过以下方式调整上升和下降斜率。在引脚8处将电阻连接到地,因为斜率与引脚的输出电流成比例。斜率控制采用0Ω的电阻值实现,单端压摆率约为38 V /μs,最高压摆率为50kΩ,可实现约4 V /μs的压摆率。有关斜率控制的更多信息,请参阅应用和实现部分。 SN55HVD233-SEP进入低电流待机(仅监听)模式,在此模式下驱动器关闭如果对引脚8...
发表于 01-08 17:49 376次 阅读
SN55HVD233-SEP 采用增强型航天塑料封装且具有待机模式的耐辐射 3.3V CAN 收发器

TCAN1044-Q1 汽车类高速 CAN 收发器

TCAN1044x-Q1器件均为高速控制器局域网(CAN)收发器,满足ISO 11898-2:2016高速CAN规范的物理层要求,可提供CAN总线和CAN协议控制器之间的接口.TCAN1044x-Q1器件支持传统CAN和CAN FD网络,具有最高5Mbps的数据速率。部件号中带有“V”后缀的器件具有通过V IO 端子实现的内部逻辑电平转换功能,允许直接连接到1.8V,3.3V或5V控制器。这些器件具有低功耗待机模式,可通过ISO 11898-2:2016定义的唤醒模式( WUP)实现远程唤醒.TCAN1044x-Q1器件具有许多保护和诊断特性,包括热关断(TSD),驱动器显性超时(TXD DTO)和高达±42V的总线故障保护。 特性 AEC Q100:符合汽车类应用标准 器件温度等级1: -40°C至125° CT A 符合ISO 11898-2:2016和ISO 11898-5:2007物理层标准的要求 高达5Mbps的传统CAN和CAN FD支持 较短的对称传播延迟时间和快速循环次数增加时序余量 在有负载CAN网络中实现更快的数据速率< /li> I /O电压范围:1.8V至5V 优化了未上电时的性能 总线和逻辑终端为 结温范围:-40°C至150°C 可提供SOIC(8)封装和无引线VSON...
发表于 01-08 17:49 539次 阅读
TCAN1044-Q1 汽车类高速 CAN 收发器

TCAN1044V-Q1 汽车类高速 CAN 收发器

TCAN1044x-Q1器件均为高速控制器局域网(CAN)收发器,满足ISO 11898-2:2016高速CAN规范的物理层要求,可提供CAN总线和CAN协议控制器之间的接口.TCAN1044x-Q1器件支持传统CAN和CAN FD网络,具有最高5Mbps的数据速率。部件号中带有“V”后缀的器件具有通过V IO 端子实现的内部逻辑电平转换功能,允许直接连接到1.8V,3.3V或5V控制器。这些器件具有低功耗待机模式,可通过ISO 11898-2:2016定义的唤醒模式( WUP)实现远程唤醒.TCAN1044x-Q1器件具有许多保护和诊断特性,包括热关断(TSD),驱动器显性超时(TXD DTO)和高达±42V的总线故障保护。 特性 AEC Q100:符合汽车类 应用标准器件温度等级 1:–40°C 至 125°C TA符合 ISO 11898-2:2016 和 ISO 11898-5:2007 物理层标准的要求高达 5Mbps 的传统 CAN 和 CAN FD 支持较短的对称传播延迟时间和快速循环次数增加时序余量在有负载 CAN 网络中实现更快的数据速率I/O 电压范围:1.8V 至 5V优化了未上电时的性能总线和逻辑终端为高阻抗(运行总线或应用上无负载) 支持热插拔:总线和 RXD 输出端加电/断电时的无毛...
发表于 01-08 17:49 625次 阅读
TCAN1044V-Q1 汽车类高速 CAN 收发器

TLIN2441-Q1 具有集成电压稳压器和看门狗的汽车本地互联网络收发器

TLIN2441-Q1是一款LocalInterconnect网络(LIN)物理层收发器,具有集成的低压差稳压器,唤醒和保护功能,符合LIN 2.0标准,LIN 2.1,LIN 2.2,LIN2.2A和ISO /DIS17987-4.2标准.TLIN2441-Q1集成了基于窗口或超时的看门狗监控器,可通过PIN或SPI进行配置和控制。 TLIN2441-Q1看门狗由PIN捆扎或SPI控制,具体取决于上电时引脚9的状态。 LIN是一种单线双向总线,通常用于低速车载网络,数据速率高达20 kbps。 LIN接收器支持高达100 kbps的数据速率,用于行结束编程。 TLIN2441-Q1使用限流波形整形驱动器将TXD输入上的LIN协议数据流转换为LIN总线信号,从而减少电磁辐射(EME)。接收器将数据流转换为逻辑电平信号,通过开漏RXDpin发送到微处理器。 使用休眠模式可以实现超低电流消耗,允许通过LIN总线或引脚唤醒。 LIN总线有两种状态:显性状态(接近电压)和隐性状态(电池附近的电压)。在隐性状态下,LIN总线通过内部上拉电阻(45kΩ)和串联二极管拉高。从应用程序不需要外部上拉组件。主应用需要一个外部上拉电阻(1kΩ)和LIN规范的串联二极管。 特性 AEC Q...
发表于 01-08 17:48 296次 阅读

TLIN1441-Q1 具有集成电压稳压器和看门狗的汽车本地互联网络收发器

TLIN1441-Q1是一款LocalInterconnect网络(LIN)物理层收发器,具有集成的低压差稳压器,唤醒和保护功能,符合LIN 2.0标准,LIN 2.1,LIN 2.2,LIN2.2A和ISO /DIS17987-4.2标准.TLIN1441-Q1集成了一个基于窗口或超时的看门狗监控器,可通过PIN或SPI进行配置和控制。 TLIN1441-Q1看门狗由PIN捆扎或SPI控制,具体取决于上电时引脚9的状态。 LIN是一种单线双向总线,通常用于低速车载网络,数据速率高达20 kbps。 LIN接收器支持高达100 kbps的数据速率,用于行结束编程。 TLIN1441-Q1使用限流波形整形驱动器将TXD输入上的LIN协议数据流转换为LIN总线信号,从而减少电磁辐射(EME)。接收器将数据流转换为逻辑电平信号,通过开漏RXDpin发送到微处理器。 使用休眠模式可以实现超低电流消耗,允许通过LIN总线或引脚唤醒。 LIN总线有两种状态:显性状态(接近电压)和隐性状态(电池附近的电压)。在隐性状态下,LIN总线通过内部上拉电阻(45kΩ)和串联二极管拉高。从应用程序不需要外部上拉组件。主应用需要一个外部上拉电阻(1kΩ)和LIN规范的串联二极管。 特性 AEC...
发表于 01-08 17:48 376次 阅读

SN65LBC031 高速控制器局域网 (CAN) 收发器

SN75LBC031是一个CAN收发器,用作CAN控制器和物理总线之间的接口,用于高达500 kBaud的高速应用。该器件为差分总线提供传输能力,并为控制器提供差分接收功能。发送器输出(CANH和CANL)具有内部转换调节功能,可提供受控对称性,从而实现低EMI辐射。两个变送器输出都可以完全防止电池短路和总线上可能发生的瞬态电压。在器件功耗过大的情况下,热关断电路会在大约160°C的结温下禁用输出驱动器。在发送器输入端包含内部上拉电阻可确保在上电和协议控制器复位期间定义输出。对于500 kBaud的正常操作,ASC端子打开或连接到GND。对于125 kBaud的低速运行,可以通过将ASC端子连接到V CC 来增加总线输出转换时间以降低EMI。接收器包括一个集成滤波器,可将信号抑制成小于30 ns的脉冲。 SN75LBC031的工作温度范围为-40°C至85°C。 SN65LBC031的工作温度范围为-40°C至125°C。 SN65LBC031Q的特点是可在-40°C至125°C的汽车温度范围内工作。 特性 SN75LBC031符合标准ISO /DIS 11898(最高500 k波特) 50 mA时的驱动器输出能力 宽输入/输出总输入/输出总线电压范围 总线输出短路保...
发表于 10-16 10:08 214次 阅读
SN65LBC031 高速控制器局域网 (CAN) 收发器

SN65HVD233 具有待机模式和环回功能的 3.3V CAN 收发器

SN65HVD233,SN65HVD234和SN65HVD235用于采用符合ISO 11898标准的控制器局域网(CAN)串行通信物理层的应用中。作为CAN收发器,每个都在差分CAN总线和CAN控制器之间提供发送和接收功能,信号速率高达1 Mbps。 设计用于特别恶劣的环境,设备具有交叉线保护,高达±36 V的过压保护,接地保护丢失,过热(热关断)保护以及±100 V的共模瞬变保护。这些器件可在7 V至12 V的宽共模范围内工作。这些收发器是微处理器上的主机CAN控制器与工业,楼宇自动化,运输和汽车应用中使用的差分CAN总线之间的接口。 模式: R < SN65HVD233,SN65HVD234和SN65HVD235的sub> S 引脚(引脚8)提供三种工作模式:高速,斜率控制和低功耗待机模式。通过将引脚8直接连接到地来选择高速工作模式,允许驱动器输出晶体管尽可能快地接通和断开,而不限制上升和下降斜率。可以通过在R S 引脚和地之间连接一个电阻来调整上升和下降斜率。斜率将与引脚的输出电流成比例。电阻值为10kΩ时,器件驱动器的压摆率约为15 V /μs,值为100kΩ时,器件的压摆率约为2.0 V /μs。有关斜率控制的更多信息,请参阅功能描述。 SN65HVD23...
发表于 10-16 10:08 1334次 阅读
SN65HVD233 具有待机模式和环回功能的 3.3V CAN 收发器

TLIN2024-Q1 四路 LIN 收发器

TLIN2024-Q1器件是一款四路局域互连网络(LIN)物理层收发器,集成了唤醒和保护特性,符合LIN 2.0 ,LIN 2.1,LIN 2.2,LIN 2.2A和ISO /DIS 17987-4.2标准.LIN是一根单线制双向总线,通常用于低速车载网络,数据传输速率高达20kbps.LIN接收器支持数据传输速率高达100kbps的内联编程应用.TLIN2024-Q1具有两个独立的双路LIN收发器模块.V SUP1 /2 可控制独立的双路收发器模块.TLIN2024-Q1使用一个可降低电磁辐射(EME)的限流波形整形驱动器将TXD输入上的LIN协议数据流转化为LIN总线信号。接收器将数据流转化为逻辑电平信号,此信号通过开漏RXD引脚发送到微处理器。休眠模式可实现超低电流消耗,该模式允许通过LIN总线或EN引脚实现唤醒。集成电阻器,静电放电(ESD)保护和故障保护功能有助于设计人员节约应用的布板空间 特性 符合汽车类标准 具有符合AEC Q100标准的下列结果: 器件环境温度:-40°C至125°C 器件HBM ESD分类等级:±6kV 器件CDM ESD分类等级:±1.5kV 符合LIN 2.0,LIN 2.1,LIN 2.2,LIN 2.2A和ISO /DIS 17987-4.2标...
发表于 10-16 10:08 278次 阅读
TLIN2024-Q1 四路 LIN 收发器

SN75LBC031 收发器

SN75LBC031是一个CAN收发器,用作CAN控制器和物理总线之间的接口,用于高达500 kBaud的高速应用。该器件为差分总线提供传输能力,并为控制器提供差分接收功能。发送器输出(CANH和CANL)具有内部转换调节功能,可提供受控对称性,从而实现低EMI辐射。两个变送器输出都可以完全防止电池短路和总线上可能发生的瞬态电压。在器件功耗过大的情况下,热关断电路会在大约160°C的结温下禁用输出驱动器。在发送器输入端包含内部上拉电阻可确保在上电和协议控制器复位期间定义输出。对于500 kBaud的正常操作,ASC端子打开或连接到GND。对于125 kBaud的低速运行,可以通过将ASC端子连接到V CC 来增加总线输出转换时间以降低EMI。接收器包括一个集成滤波器,可将信号抑制成小于30 ns的脉冲。 SN75LBC031的工作温度范围为-40°C至85°C。 SN65LBC031的工作温度范围为-40°C至125°C。 SN65LBC031Q的特点是可在-40°C至125°C的汽车温度范围内工作。 特性 SN75LBC031符合标准ISO /DIS 11898(最高500 k波特) 50 mA时的驱动器输出能力 宽输入/输出总输入/输出总线电压范围 总线输出短路保...
发表于 10-16 10:08 170次 阅读
SN75LBC031 收发器

SN65LBC031Q 高速控制器局域网 (CAN) 收发器

SN75LBC031是一个CAN收发器,用作CAN控制器和物理总线之间的接口,用于高达500 kBaud的高速应用。该器件为差分总线提供传输能力,并为控制器提供差分接收功能。发送器输出(CANH和CANL)具有内部转换调节功能,可提供受控对称性,从而实现低EMI辐射。两个变送器输出都可以完全防止电池短路和总线上可能发生的瞬态电压。在器件功耗过大的情况下,热关断电路会在大约160°C的结温下禁用输出驱动器。在发送器输入端包含内部上拉电阻可确保在上电和协议控制器复位期间定义输出。对于500 kBaud的正常操作,ASC端子打开或连接到GND。对于125 kBaud的低速运行,可以通过将ASC端子连接到V CC 来增加总线输出转换时间以降低EMI。接收器包括一个集成滤波器,可将信号抑制成小于30 ns的脉冲。 SN75LBC031的工作温度范围为-40°C至85°C。 SN65LBC031的工作温度范围为-40°C至125°C。 SN65LBC031Q的特点是可在-40°C至125°C的汽车温度范围内工作。 特性 SN75LBC031符合标准ISO /DIS 11898(最高500 k波特) 50 mA时的驱动器输出能力 宽输入/输出总输入/输出总线电压范围 总线输出短路保...
发表于 10-16 10:08 188次 阅读
SN65LBC031Q 高速控制器局域网 (CAN) 收发器