0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于GPS接收机的天线阵列抗干扰射频前端

SwM2_ChinaAET 来源:未知 作者:李倩 2018-06-06 09:12 次阅读

摘要:卫星导航定位系统的抗干扰技术研究意义重大。基于天线阵列的抗干扰技术需要同时采集多路GPS天线信号,而通用GPS接收机大多只能接收单路天线信号,难以满足需求。为此,设计了一种四元天线阵列的GPS抗干扰射频前端。通过四元天线阵列分别接收四路GPS信号,经过低噪声放大器、射频滤波器、下变频到中频信号,以供给后级A/D采样,经抗干扰模块后达到抗干扰目的。最后,对此射频前端进行整体电路测试,并给出了测试结果。经实际应用,验证了该系统方案的可行性。

0 引言

全球定位系统(Global Position System,GPS)卫星发射的信号功率小,到达地面信号微弱,再加上无法预料的恶劣环境以及专用GPS干扰机[1]的出现,这些都会直接导致GPS信号受到干扰,严重时甚至无法正常工作[1-2]。因此,为了使GPS接收机能够应付更加复杂的环境,提高其自身的抗干扰能力,开展GPS抗干扰技术的研究得到了广泛的关注[3]。

目前针对GPS抗干扰技术的研究主要包括自适应天线阵列[4]、天线增强、前端滤波技术[5]、码环跟踪[6]以及空时自适应信号处理等技术。自适应天线阵列技术能够抑制多种干扰,是该领域的主要研究模型[7]。该模型要求同时接收多路卫星信号。现有GPS接收机射频前端主要接收一路或两路信号[8-9],不能满足要求。因此,本文设计了四元天线阵列GPS抗干扰射频前端。方案采用了低噪声、滤波、混频、锁相环、自动增益控制等技术模块。与文献[10] GPS射频前端相比,本设计输出中频较低,相差达40 MHz,能够降低损耗,提高信号稳定度,便于后续处理。

1 总体设计

GPS接收系统包括卫星天线、射频前端、基带信号处理三个部分。在超外差接收机中,射频前端的功能是对GPS信号进行信号调理,下变频到中频段,为后续A/D采样提供信号。

天线阵列射频前端是在上述基础上进一步设计。如图1所示,系统由4路构成。每一路信号链路包括低噪声放大器(Low Noise Amplifier,LNA)、频带限制滤波器(Band Limiting Filter,BLF)、混频器(MIXER)、锁相环(Phase Locked Logic,PLL)、自动增益控制器(Automatic Gain Control,AGC)、中频放大器(Amplifier,AMP)。

天线采用均匀直线阵列,将4路天线等间距排在一条直线上,结构简单,仿真容易。设入射波长为λ,两天线间距为d,光速为c,信源以γ角度入射到均匀直线阵列,如图2所示。

当N个信源分别以入射角γ0,…,γN-1入射时,将M个阵元在k时刻的输出表示为如下列矢量:

2 系统硬件电路设计

2.1 低噪声放大器LNA

为了提高接收信号的灵敏度,在接收机的最前端采用低噪声放大器。系统的噪声系数F定义为输入、输出信噪比的比值:

式中,N为级联的级数。由式(4)可知,最前端放大器的噪声系数F1和增益G1对整个接收机的噪声系数起决定作用[11]。低噪放的选择需要考虑:线性范围、反射系数、功耗、工作频率、工作带宽及通带内的增益平坦。

低噪声放大器件采用HMC478ST89,工作频段广,在1 GHz~2 GHz频段内具有19 dB的固定增益而且噪声系数只有3 dB。电路如图3所示,Vs为供电电压,RFIN为输入信号,RFOUT为输出信号。

器件的S参数如图4所示,S21表示增益,在GPS L1频段(1 575.42 MHz)为20 dB。在室外条件下,天线输入GPS信号功率为-80~-60 dBm,经过低噪声放大后,功率达到-60~-40 dBm,满足系统设计要求。

2.2 频带限制滤波器BPF

为滤除卫星导航信号频带外的噪声,一般在每级低噪声放大器输出端接入带通滤波器BPF[12],也称预选器,用来预选频段,并抑制镜像干扰、带外干扰和各种噪声[13]。本系统采用的是无源声表面滤波器SF1186B,中心频率为1 575.42 MHz,1 dB带宽2.046 MHz,插入损耗最大3.5 dB。该器件频响特性测试结果如图5所示,在GPS L1频段1.5 GHz左右,衰减为-2 dB左右,满足系统设计要求。

2.3 GP2015模块设计

GPS天线信号在经过放大、滤波之后,通过GP2015芯片下变频到中频信号。GP2015芯片具有低功耗、低成本、高可靠性的特点,工作电压为3 V~5 V。该芯片包括:PLL(锁相环)、三级混频器、AGC(自动增益控制器)、中频滤波器件以及两位ADC(模数转换器)。其内部详细结构如图6所示。

内部集成的PLL对基准时钟进行倍频,得到频率为1 400 MHz的本振信号LO1。采用三级混频结构,基准时钟来自温度补偿晶振(TCXO)的10 MHz。外部输入的GPS L1频段1 575.42 MHz信号与LO1进行一级混频,得到频率为175.42 MHz差频信号。经过LC滤波器后与LO2(140 MHz)进行二级混频,得到35.42 MHz差频信号。再通过声表面波滤波器进入内部AGC电路与LO3(31.11 MHz)进行三级混频,得到频率为4.309 MHz信号。该中频信号可通过内部2位A/D转换器输出两位数字信号:符号(SIGN)和量级(MAG),分别表示信号的极性和大小,数字信号输出给基带处理器进一步处理;也可直接输出模拟信号,供外部A/D采样。本设计采用直接输出模拟中频信号的方式。

2.4 基准时钟

本系统使用的GP2015器件要求10 MHz基准时钟输入,对频率的精确度和稳定度要求都比较高。系统采用有源温补晶振,频率10 MHz,输出功率8 dBm,谐波抑制-25 dB,杂波抑制-70 dB。具体电路如图7所示。

2.5 中频放大AMP

混频以及各级滤波会导致信号衰减,但是后级A/D采样需要中频信号达到0 dBm。因此,在GP2015输出端加上了一级中频放大器。中频放大器件是OPA698,它具有宽带高线性、快速响应、低功耗、反馈型宽带限压放大特性,能够实时调节电压幅度输出。

图8所示为该器件的电路图,输入信号为VIN,输出为Vo。通过调节反馈电压VH/VL来控制增益变化,使输出信号为0 dBm左右。

3 系统性能测试

国家自然科学基金项目委对该系统进行了测试,包括:单频信号测试、GPS接收机测试。测试仪器:信号源Rohde&Schware(R&S)SMB100A Signal Generator,频率范围为9 kHz~6 GHz。V.KEL接收模块:频谱仪R&S FSC6.Spectrum Analyzer,频率范围为9 kHz~6 GHz。

3.1 单频信号测试

利用信号发生器产生频率为1 575.42 MHz、功率为-80 dBm的单频信号,来模拟GPS L1频段天线信号进行测试。该信号为四元天线阵列抗干扰射频前端的输入信号。

图9所示为第一路输出信号的频谱图(另3路输出同图9),频率为4.309 MHz,带内平坦度为0.2 dB,带宽为3 MHz左右,信号功率为-2.8 dBm左右。该结果表明阵列GPS抗干扰射频前端工作正常,满足后级AD采样的需求。

3.2 GPS接收机测试

为了使天线阵列抗干扰射频前端应用于GPS接收系统中,搭建了GPS接收机测试平台。如图10所示,阵列射频前端接入4路天线信号,接入GPS抗干扰基带处理模块,再通过上位机显示收到卫星数据。

图11所示为应用本接收前端后的卫星信号接收图,共计10颗卫星,信噪比高达50 dB左右,符合通信系统指标要求。该结果表明,天线阵列抗干扰前端在干扰下能够正常工作,系统设计可行。

4 结束语

本文设计了用于GPS接收机的天线阵列抗干扰射频前端。文中对功放、滤波以及GP2015模块进行了硬件电路设计,对系统进行了单频信号测试、GPS接收测试。该设计投入使用后,能够较好地处理阵列GPS信号,满足设计要求。相比于目前通用的GPS信号射频前端,它具有抗干扰性能强、电路简单、可同时处理四路信号等优点,对GPS抗干扰技术的研究具有一定参考价值,同时能够为北斗系统所用,在抗干扰方面有借鉴意义。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    101

    文章

    5356

    浏览量

    165833
  • gps
    gps
    +关注

    关注

    22

    文章

    2748

    浏览量

    164313
  • 接收机
    +关注

    关注

    8

    文章

    1122

    浏览量

    52628

原文标题:【学术论文】GPS天线阵抗干扰射频前端设计

文章出处:【微信号:ChinaAET,微信公众号:电子技术应用ChinaAET】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于GA的智能天线系统前端扇区阵列设计

    基于GA的智能天线系统前端扇区阵列设计本文使用遗传算法(Genetic Algorithm)设计了智能天线系统前端的扇区
    发表于 07-29 08:54

    招聘抗干扰、差分导航算法工程师各一名

    首先:因为抗干扰及差分的公司属于军工企业,公司不便在此处多说,望见谅。招聘职位(一):高级算法工程师(抗干扰) 直接责任:1、参与抗干扰卫星导航接收机系统方案制定;2、参与卫星导航
    发表于 03-17 16:24

    用于GPS接收机的功率倒置阵抗干扰性能研究

    用于GPS接收机的功率倒置阵抗干扰性能研究
    发表于 08-26 14:05

    GPS接收机抗干扰自适应天线的设计

    GPS接收机抗干扰自适应天线的设计
    发表于 08-26 14:07

    基于车载系统的GPS接收机射频前端设计

    接收机的噪限灵敏度和信噪比以及其它技术指标都会大大下降,从而影响所接收信号的效果。 图1所示为自动车辆定位导航(AVLN)系统组成框图,其中GPS接收机
    发表于 06-26 06:39

    GPS/Galileo双频双模接收机射频前端系统的设计方案介绍

    。所以,在原有的单模接收机的基础 上研发更高精度、更加稳定耐用的双模接收机成为研究的核心。本文提出了一种GPS/Galileo双频双模接收机射频
    发表于 07-09 07:55

    射频仿真系统的天线阵列怎么校准?

    射频仿真系统的子系统-天线阵列及馈电系统,主要用于模拟弹目间的视线角运动,为了保证天线阵列及馈电系统的角位置模拟精度,必须对天线阵列系统进行
    发表于 08-21 06:57

    接收机射频前端设计怎么实现?

    射频前端模块性能关系到整个接收机的性能。本文通过对接收机进行研究,分析了超外差接收机的特点,提出了一种采用PLL技术的
    发表于 08-22 07:38

    为有源天线阵系统选择高效节能窄带接收机的方法

    追踪目标。图 1:3×3雷达天线阵列每个天线元件都需要有自己的接收机。较小的阵列可能使用八个元件;非常大的阵则会使用数以千计的元件。这些系统需要大量的
    发表于 11-16 08:03

    GPS接收机射频前端电路原理与设计

    GPS接收机射频前端电路原理与设计 在天线单元设计中采用了高频、低噪声放大器,以减弱天线热噪声
    发表于 02-08 09:50 111次下载

    一种应用于车载系统的GPS接收机射频前端的设计

    一种应用于车载系统的GPS接收机射频前端的设计 GPS(GLOBLE POSITIONING
    发表于 05-13 14:40 1051次阅读
    一种应<b class='flag-5'>用于</b>车载系统的<b class='flag-5'>GPS</b><b class='flag-5'>接收机</b><b class='flag-5'>射频</b><b class='flag-5'>前端</b>的设计

    关于GPS天线阵抗干扰射频前端设计

    干扰,严重时甚至无法正常工作[1-2]。因此,为了使GPS接收机能够应付更加复杂的环境,提高其自身的抗干扰能力,开展GPS
    的头像 发表于 06-07 13:49 9841次阅读
    关于<b class='flag-5'>GPS</b><b class='flag-5'>天线阵</b><b class='flag-5'>抗干扰</b><b class='flag-5'>射频</b><b class='flag-5'>前端</b>设计

    美军装备首台抗干扰GPS接收机,关键在波束可控天线

    数字式GPS抗干扰接收机(DIGAR),其关键技术是业界领先的GPS抗干扰/防欺骗天线电子产品。
    的头像 发表于 12-31 15:16 6927次阅读

    三款GPS接收机射频前端电路图解析

    GP2015是一个GPS接收机射频前端电路,提供一个低功率、低成本和高可靠性的GPs射频
    发表于 04-23 11:15 6559次阅读
    三款<b class='flag-5'>GPS</b><b class='flag-5'>接收机</b><b class='flag-5'>射频</b><b class='flag-5'>前端</b>电路图解析

    基于超表面天线阵列射频前端与数字后端联合抗干扰方案

    本文提出一种基于超表面天线阵列射频前端与数字后端联合抗干扰方案,利用超表面天线快速可重构能力,对同一信号切换不同方向图
    发表于 02-20 11:01 121次阅读
    基于超表面<b class='flag-5'>天线阵列</b>的<b class='flag-5'>射频</b><b class='flag-5'>前端</b>与数字后端联合<b class='flag-5'>抗干扰</b>方案