I²C总线、UART总线和A/D转换器应用设计

ZLG致远电子 2018-05-28 08:57 次阅读

本文导读

在传统的基于寄存器的开发模式中,使用一个外设往往要阅读英文手册,理解寄存器每一位的含义,一步一步操作、调试,十分麻烦。AWorks提供的外设通用接口不仅可以跨平台复用,而且非常简洁,一个外设往往只有2~3个接口。本文将介绍通用的I²C、UARTADC接口。本文为《面向AWorks框架和接口的编程(上)》第三部分软件篇——第7章通用外设接口——第4~6小节:I²C总线、UART总线和A/D转换器。

7.4  I²C总线

7.4.1  I²C总线简介

I²C器件的两线制总线,不仅硬件电路非常简洁,而且还具有极强的复用性和可移植性。I²C总线不仅适用于电路板内器件之间的通信,而且通过中继器还可以实现电路板与电路板之间长距离的信号传输,因此使用I²C器件非常容易构建系统级电子产品开发平台。其特点如下:

  • 总线仅需2根信号线,减少了电路板的空间和芯片管脚的数量,降低了互连成本;

  • 同一条I²C总线上可以挂接多个器件,器件之间按不同的编址区分,因此不需要任何附加的I/O或地址译码器;

  • 非常容易实现I²C总线的自检功能,以便及时发现总线的异常情况;

  • 总线电气兼容性好,I²C总线规定器件之间以开漏I/O互连,因此只要选取适当的上拉电阻就能轻易实现3V/5V逻辑电平的兼容;

  • 支持多种通信方式,一主多从是最常见的通信方式。此外还支持双主机通信、多主机通信与广播模式;

  • 通信速率高,其标准传输速率为100Kbps(每秒100K位),在快速模式下为400Kbps,按照后来修订的版本,位速率可高达3.4Mbps。

7.4.2  I²C接口

绝大部分情况下,MCU都作为I²C主机与I²C从机器件通信,因此这里仅介绍AWorks中将MCU作为I²C主机的相关接口,接口原型详见表7.14。

表7.14 I²C标准接口函数

1.  定义I²C从机器件实例

对于用户来讲,使用I²C总线的目的往往是用于操作一个从机器件,比如,LM75、E2PROM等。MCU作为I²C主机与从机器件通信,需要知道从机器件的相关信息,比如,I²C从机地址等。在AWorks中,定义了统一的从机器件类型:aw_i2c_device_t,用于包含从机器件相关的信息,以便主机正确的与之通信。该类型的具体定义用户无需关心,在使用I²C操作一个从机器件前,必须先使用该类型定义一个与从机器件对应的器件实例,例如:

其中,dev为用户自定义的从机实例,其地址可以作为接口函数中p_dev的实参传递。

2.  初始化从机器件实例

当完成从机器件实例的定义后,还需要完成其初始化,指定从机器件相关的信息,初始化函数的原型为:

其中,p_dev为指向I²C从机实例的指针,busid为I²C总线编号,addr为从机器件地址,flags为从机器件相关的一些标志。

在AWorks中,一个系统往往具有多条I²C总线,各总线之间通过busid区分,一个系统实际支持的I²C总线条数与具体硬件平台相关。例如,在i.MX28x系统中,最高可以支持2条I²C总线,对应的总线编号即为:0 ~ 1。busid参数即用于指定使用那条I²C总线与从机器件进行通信。

addr为从机器件的I²C地址,由于读/写方向位由系统自动控制,因此,地址中不需要包含读写方向位。地址可以为7位地址和10位地址。

flags为从机器件相关的属性标志,可分为3大类:从机地址的位数、是否忽略无应答和器件内子地址(通常又称之为“寄存器地址”)的字节数。具体可用属性标志详见表7.15,可使用“|”操作连接多个属性标志。

表7.15 从机设备属性

例如,要使用I²C0(I²C总线的busid为0)操作温度传感器芯片LM75B,则应该首先定义并初始化一个与LM75B对应的从机器件。这就还需要知道两点重要的信息:器件从机地址和实例属性。

要获取这些信息,就必须查看芯片相关的数据手册,对于LM75B,其引脚分布图详见图7.12。LM75B的器件地址为7位地址:1001A2、A1、A0,其中,A2、A1、A0分别为引脚A2、A1、A0的状态。在扩展板中,LM75B等效的应用电路详见图7.11。

其中,R9和R10是I²C总线的上拉电阻,同时,只要短接(J13_1、J13_2)与(J11_1、J11_2),LM75的SCL和SDA引脚分别与I²C0总线的SCL和SDA相连。

图7.11 LM75B应用电路

图7.12 LM75B管脚图

由图7.11可知,A2、A1、A0均与地连接,因此,LM75的地址中相应位的值均为0,由此可得LM75B的7位地址为:1001000,即0x48。

从机属性分为从机地址属性、应答属性和器件内子地址属性。LM75B的从机地址为7位,其对应的属性标志为AW_I²C_ADDR_7BIT。

如果从机实例不能应答,则设置AW_I²C_IGNORE_NAK标志,一般来说,标准的I²C从机器件均可产生应答信号,除非特殊说明,否则都不需要使用该标志。LM75B内部共计有4个寄存器,它们的定义详见表7.16。

表7.16 LM75B内部寄存器列表

由表中地址栏内容可知,所有寄存器的地址均为8位,因此,器件内子地址为一个字节,对应的属性标志为:AW_I²C_SUBADDR_1BYTE。因为器件子地址只有一个字节,所以没有高字节与低字节之分,也就无需使用

AW_I²C_SUBADDR_MSB_FIRST

或AW_I²C_SUBADDR_LSB_FIRST标志。

通过以上分析,得到了LM75B相关的从机信息,为此,可以定义并初始化一个与LM75B对应的从机器件实例,范例程序详见程序清单7.26。

程序清单7.26 从机器件实例初始化函数范例程序

3.  读操作

从I²C从机器件指定的子地址中读出数据的函数原型为:

其中,p_dev为指向I²C从机实例的指针,subaddr为器件子地址,以指定读取数据的位置,p_buf指向存放读取数据的缓冲区,nbytes指定读取数据的字节数。返回值为标准的错误号,返回AW_OK时表示读取成功,否则,表示读取失败。

由表7.16可知,在LM75B中,地址0存放了2字节的温度值,如需读取温度,则可以直接从地址0中读取2字节数据,范例程序详见程序清单7.27。

程序清单7.27 读取数据范例程序

读取的两字节数据表示的温度值是多少呢?这两个字节具体表示的温度值含义可从芯片的数据手册获取。温度使用16位二进制补码表示,最高位为符号位,最高位为1时,表示温度为负数。读取温度时,读取的首个字节是高8位数据,紧接着的字节是低8位数据。各个位表示的温度权重详见表7.17。

表7.17 温度值数据各个位的含义

表中,2的n次方表示温度的权重。实际中,LM75B的温度分辨率有限,只能达到小数点后3位,低5位的值通常为0,是无效的,因此,LM75B实际温度的分辨率为2-3,即0.125℃。

据此,可以将字节0和字节1合并为一个有符号的16位整数,例如:

由于低5位无效,因此,式中将字节1与0xE0(1110 0000)作了 “与”运算,将低5位可靠的清0。同时,式中将整数部分左移了8位,小数部分也使用整数表示,相当于把原温度值扩大了256(28)倍。因此,temp的值为实际温度值的256倍,由此得到了LM75B采集到的温度值。

基于此,可以编写一个温度采集的范例程序,详见程序清单7.28。

程序清单7.28 温度采集范例程序

程序中,每秒采集一次温度值,并使用aw_kprintf()打印输出。打印输出当前的温度值时,由于aw_kprintf()暂时不支持直接打印浮点数,例如:

因此,分别打印了整数部分和小数部分,整数部分可以将temp整除256得到。计算小数部分时,先将temp扩大了1000倍,再除以256,得到的值即为实际温度的1000倍,最后对1000取余,即可得到实际温度小数点后3位的值。例如,实际温度为11.375度,则temp的值为11.375的256倍,即2912,整数部分即为该值整除256:

小数部分的值计算过程如下:

最终打印输出的结果即为:

这样的计算过程虽然看起来复杂了一些,但是其却从根本上避免了浮点运算,保证了程序运行的效率。在没有硬件浮点运算单元的MCU中,浮点运算是通过软件模拟的,效率非常低下。在AWorks中,如非必要,都应该尽可能避免浮点运算。即使是在有浮点运算单元的MCU中,也应该在一些基础的运算中避免使用浮点运算,因为在少量简单的浮点运算中,使用硬件浮点运算单元计算时,效率并不能得到明显的提升,反而增加了系统的负担,例如,当外部中断产生时,需要保护现场,如果使用了硬件浮点运算单元,则保护现场的数据量将大大增加。一般来讲,只有在需要大量浮点运算的场合(比如,在一些算法计算中,很难使用整数运算来避免浮点运算),才使用浮点运算。

需要特别说明的是,这里通过I²C总线直接读取了LM75B温度传感器中的温度值,仅用于介绍I²C总线接口的使用方法。实际中,AWorks已经定义了通用的温度接口,在应用中读取温度时,均建议直接使用通用的温度接口。

4.  写操作

向I²C从机实例指定的子地址中写入数据的函数原型为:

其中,p_dev为指向I²C从机实例的指针,subaddr为器件子地址,以指定写入数据的位置,p_buf指向存放待写入数据的缓冲区,nbytes指定写入数据的字节数。返回值为标准的错误号,返回AW_OK时表示写入成功,否则,表示写入失败。

由表7.16可知,在LM75B中,地址2和地址3中各存放了2字节的温度值,分别表示温度上限值(Thyst)和下限值(TOS),Thyst必须小于TOS,两个温度值均是可读可写的,默认情况下,Thyst的值为75℃,TOS的值为80℃。它们存储温度值的格式和地址0中温度值的格式类似,唯一不同的是,其表示温度的分辨率只有0.5度,因此,小数部分只有一位有效,低7位全为0。例如,同样将2字节数据看作一个有符号的16位整数temp,则temp的值为温度值的256倍。由此可得,若要表示80.5度,则对应的16位数据的值为:80.5 * 256 = 20608,即0x5080。

LM75B每次采集到新的温度时,都将与这两个温度值作比较,比较的结果将决定OS引脚的输出,以作为一种温度报警的机制。具体比较的方法与LM75B所处的模式相关,LM75B可以工作在比较模式或中断模式(可通过配置寄存器配置):若LM75B工作在比较模式,则当采样温度大于TOS时,OS引脚输出激活电平(激活电平可以通过配置寄存器配置为高电平或低电平),当采样温度降低到THYST以下时,OS引脚恢复到正常电平;若LM75B工作在中断模式,首先,采样温度与TOS比较,当采样温度大于TOS时,OS引脚输出激活电平,直到主机读取一次LM75B后,OS引脚将自动恢复为正常电平。接着,采样温度将切换为与THYST比较,当采样温度低于THYST时,OS引脚输出激活电平,直到主机读取一次LM75B后,OS引脚将自动恢复为正常电平。接着,又将采样温度切换为与TOS比较,当采样温度大于TOS时,OS引脚输出激活电平,以此类推。示意图详见图7.13。

图7.13 LM75B的OS引脚输出示意图

注:图中以激活电平为低电平,正常电平为高电平为例。在中断模式下,OS引脚可以被两种操作复位为正常电平:被主机读取一次数据;主机通过写配置寄存器,使LM75B进入关机模式。更多详细的内容可以查阅LM75B的数据手册,这里仅为简单介绍使用AWorks的I²C接口操作I²C从机器件的方法。

例如,要修改TOS的值为80.5℃,则需要修改TOS寄存器的值为0x5080,写入时,高字节先写入,低字节后写入,即先写入0x50,后写入0x80。范例程序详见程序清单7.29。

程序清单7.29 写入数据范例程序

由于TOS寄存器是可读可写的,为了验证是否写入成功,可以通过I²C读取接口,再读取出TOS寄存器的值,如果读出的值与写入的值相同,则表明写入成功。范例程序详见程序清单7.30。

程序清单7.30 验证写入数据是否成功的范例程序

7.5  UART总线

7.5.1  UART简介

UART

(Universal Asynchronous Receiver/Transmitter)是一种通用异步收发传输器,其使用串行的方式在双机之间进行数据交换,实现全双工通信。数据引脚仅包含用于接收数据的RXD和用于发送数据的TXD。

UART是一种串行通信协议,数据在数据线上按位一位一位的发送,UART协议主要有以下几个概念需要了解:

  • 波特率

波特率是衡量数据传输速率的指标,表示每秒传送数据的位数,值越大,数据通信的速率越高,数据传输得越快。常见的波特率有4800、9600、14400、19200、38400、115200等等,如果波特率为115200,则表示每秒钟可以传输115200位(注意:是bit,不是byte)数据。

  • 空闲位

数据线上没有数据传输时,数据线处于空闲状态。空闲状态的电平逻辑为“1”。

  • 起始位

起始位表示一帧数据传输的开始,起始位的电平逻辑是“0”。

  • 数据位

紧接起始位后,即为实际通信传输的数据,数据的位数可以是5、6、7、8等,数据传输时,从最低位开始依次传输。

  • 奇偶校验位

奇偶校验位用于接收方对数据进行校验,及时发现由于通信故障等问题造成的错误数据。奇偶校验位是可选的,可以不使用奇偶校验位。奇偶校验有奇校验和偶校验两种形式,该位的逻辑电平与校验方法和所有数据位中逻辑“1”的个数相关。

奇校验:通过设置该位的值(“1”或“0”),使该位和数据位中逻辑“1”的总个数为奇数。例如,数据位为8位,值为:10011001,1的个数为4个(偶数),则奇校验时,为了使1的个数为奇数,就要设置奇偶校验位的值为1,使1的总个数为5个(奇数)。

偶校验:通过设置该位的值(“1”或“0”),使该位和数据位中逻辑“1”的总个数为偶数。例如,数据位为8位,值为:10011001,1的个数为4个(偶数),则偶校验时,为了使1的个数为偶数,就要设置奇偶校验位的值为0,使1的个数保持不变,为4(偶数)。

通信双方使用的校验方法应该一致,接收方通过判断“1”的个数是否为奇数(奇校验)或偶数(偶校验)来判定数据在通信过程中是否出错。

  • 停止位

停止位表示一帧数据的结束,其电平逻辑为“1”,其宽度可以是1位、1.5位、2位。即其持续的时间为位数乘以传输一位的时间(由波特率决定),例如,波特率为115200,则传输一位的时间为1/115200秒,约为8.68us。若停止位的宽度为1.5位,则表示停止位持续的时间为:1.5 × 8.68us ≈ 13us。

常见的帧格式为:1位起始位,8位数据位,无校验,1位停止位。由于起始位的宽度恒为1位,不会变化,而数据位,校验位和停止位都是可变的,因此,往往在描述串口通信协议时,都只是描述其波特率、数据位,校验位和停止位,不再单独说明起始位。

注意,通信双方必须使用完全相同的协议,包括波特率、起始位、数据位、停止位等。如果协议不一致,则通信数据会错乱,不能正常通信。在通信中,若出现乱码的情况,应该首先检查通信双方所使用的协议是否一致。

7.5.2  串行接口

在AWorks中,定义了通用的串行接口,可以使用串行接口操作UART,实现数据的收发。接口原型详见表7.18。

表7.18 串行接口(aw_serial.h)

1.  UART控制

在使用UART进行数据传输前,需要正确配置串行通信协议,比如:波特率、数据位、停止位、校验位等。其函数原型为:

其中,com为串口设备的ID,request表示本次请求控制的命令,p_arg为与request对应的参数,其具体类型与request的值相关。返回值为标准的错误号,返回AW_OK时表示本次控制成功,否则,表示控制失败。

在AWorks中,一个系统往往可以有多路串口输出,例如,在i.MX28x中,有1路调试串口,5路应用串口,为了区分各个串口,为各个串口设备分配了唯一的编号,如在i.MX28x中,各个串口设备分配的编号详见表7.19。

表7.19 各串口设备对应的编号

COM0 ~ COM5是在aw_serial.h文件中定义的宏,即:

request表示本次请求控制的命令,p_arg为与之对应的参数。常见命令与对应p_arg参数的实际类型详见表7.20。

表7.20 UART常用控制命令

  • 设置波特率

设置波特率使用SIO_BAUD_SET命令,该命令(包括后文以SIO_口味前缀的各个命令宏定义)在aw_sio_common.h文件中定义,aw_serial.h文件已经自动包含该文件,用于无需再额外包含。设置波特率为115200的范例程序详见程序清单7.31。

程序清单7.31 设置波特率范例程序

  • 获取波特率

获取波特率使用SIO_BAUD_GET命令,获取波特率的范例程序详见程序清单7.32。

程序清单7.32 获取波特率范例程序

  • 设置硬件参数

设置硬件参数包括通信协议相关的参数,比如:数据位、校验位、停止位等。设置硬件参数对应的命令为SIO_HW_OPTS_SET,其对应的p_arg为32位整数,是由多个参数宏通过或(“|”)运算符连接组成。相关的参数宏详见表7.21。

表7.21 UART硬件参数(aw_sio_common.h)

例如,几种常见的配置范例详见程序清单7.33。

程序清单7.33 设置硬件参数的范例程序

  • 获取硬件参数

获取当前硬件参数的命令为SIO_HW_OPTS_GET。例如,通过获取硬件参数,判断当前使用何种校验方式的范例程序详见程序清单7.34。

程序清单7.34 获取硬件参数的范例程序

此外,在发送或接收数据时,还会使用到几个命令,这些命令在讲解发送数据和接收数据时再详细介绍。

2.  发送数据

在AWorks中,为每个串口设备都分配了一个发送数据缓冲区(默认大小为128字节),用于缓存用户发送的数据。当用户发送数据时,首先会将数据加载到缓冲区中,加载到缓冲区后,串口设备将按照设定的波特率自动发送缓冲区中的数据。用户将数据写入缓冲区后,即可不用再处理串口的发送,转而处理其它事务。发送数据的函数原型为:

其中,com为串口设备的编号,p_buffer指向待发送数据的缓冲区,nbytes为发送数据的字节数。返回值为成功写入缓冲区的数据个数。比如,发送一个字符串“Hello World!“,范例程序详见程序清单7.35。

程序清单7.35 发送数据范例程序

3.  接收数据

在AWorks中,同样为每个串口设备都分配了一个接收数据缓冲区(默认大小为128字节),用于缓存串口设备接收到的数据,用户可以通过命令查询当前接收到的数据字节数,其对应的命令为:AW_FIONREAD,获取COM1的接收缓冲区中已接收数据个数的范例程序详见程序清单7.36。

程序清单7.36 获取接收缓冲区中已接收数据个数的范例程序

用户可通过接收数据接口读取缓冲区中的数据,其函数原型为:

其中,com为串口设备的编号,p_buffer指向存储读取数据的缓冲区,maxbytes为读取数据的最大字节数,其值往往与p_buffer指向的缓冲区大小一致。返回值为成功读取的数据个数。例如,接收数据的范例程序详见程序清单7.37。

程序清单7.37 接收数据范例程序

若当前接收缓冲区中具有足够的数据,即已接收数据不小于maxbytes,则成功读取maxbytes字节的数据,函数立即返回。若没有足够的数据,即已接收数据小于maxbytes小,则默认情况下,会一直阻塞等待,直到接收的数据量达到maxbytes。若用户不希望一直阻塞等待,则可以设定一个超时时间,当等待时间达到该值时,无论是否接收到maxbytes字节的数据,函数都会返回。

设定超时时间的命令为:AW_TIOCRDTIMEOUT(在aw_ioctl.h文件中定义)。设置超时时间为100ms的范例程序详见程序清单7.38。

程序清单7.38 设置读等待的超时时间为100ms

例如,通过串口控制LED0的亮灭,当接收到"on"时,则点亮LED0,当接收到"off"时,则熄灭LED0。同时,当接收到可以识别的"on"或"off"命令时,回复"OK!",若是非法命令,无法识别,则回复"Failed! Unknown Command!",范例程序详见程序清单7.39。

程序清单7.39 使用串口控制LED0的范例程序

7.6  A/D转换器

7.6.1  模数信号转换

1.  基本原理

我们经常接触的噪声和图像信号都是模拟信号,要将模拟信号转换为数字信号,必须经过采样、保持、量化与编码几个过程,详见图7.14。

图7.14 模数信号转换示意图

将以一定的时间间隔提取信号的大小的操作称为采样,其值为样本值,提取信号大小的时间间隔越短越能正确地重现信号。由于缩短时间间隔会导致数据量增加,所以缩短时间间隔要适可而止。注意,取样频率大于或等于模拟信号中最高频率的2倍,就能够无失真地恢复原信号。

将采样所得信号转换为数字信号往往需要一定的时间,为了给后续的量化编码电路提供一个稳定值,采样电路的输出还必须保持一段时间,而采样与保持过程都是同时完成的。虽然通过采样将在时间轴上连续的信号转换成了不连续的(离散的)信号,但采样后的信号幅度仍然是连续的值(模拟量)。

此时可以在振幅方向上以某一定的间隔进行划分,决定个样本值属于哪一区间,将记在其区间的值分配给其样本值。图7.14将区间分割为0~0.5、0.5~1.5、1.5~2.5,再用0、1、2……代表各区间,对小数点后面的值按照四舍五入处理,比如,201.6属于201.5~202.5,则赋值202;123.4属于122.5~123.5,则赋值123,这样的操作称为量化。

量化前的信号幅度与量化后的信号幅度出现了不同,这一差值在重现信号时将会以噪声的形式表现出来,所以将此差值称为量化噪声。为了降低这种噪声,只要将量化时阶梯间的间隔减小就可以了。但减小量化间隔会引起阶梯数目的增加,导致数据量增大。所以量化的阶梯数也必须适当,可以根据所需的信噪比(S/N)确定。

将量化后的信号转换为二进制数,即用0和1的码组合来表示的处理过程称为编码,“1”表示有脉冲,“0”表示无脉冲。当量化级数取为64级时,表示这些数值的二进制的位数必须是6位;当量化级数取为256级时,则必须用8位二进制数表示。

2.  基准电压

基准电压就是模数转换器可以转换的最大电压,以8位A/D模数转换器为例,这种转换器可以将0V到其基准电压范围内的输入电压转换为对应的数值表示。其输入电压范围分别对应4096个数值(步长),其计算方法为:参考电压/256=5/256=19.5mV。

看起来这里给出的10位A/D的步长电压值,但上述公式还定义了该模数转化器的转换精度,无论如何所有A/D的转换精度都低于其基准电压的精度,而提高输出精度的唯一方法只有增加定标校准电路。

现在很多MCU都内置A/D,即可以使用电源电压作为其基准电压,也可以使用外部基准电压。如果将电源电压作为基准电压使用的话,假设该电压为5V,则对3V输入电压的测量结果为:(输入电压/基准电压)×255=(3/5)×255=99H。显然,如果电源电压升高1%,则输出值为(3/5.05)×255=97H。实际上典型电源电压的误差一般在2~3%,其变化对A/D的输出影响是很大的。

3.  转换精度

A/D的输出精度是由基准输入和输出字长共同决定的,输出精度定义了A/D可以进行转换的最小电压变化。转换精度就是A/D最小步长值,该值可以通过计算基准电压和最大转换值的比例得到。对于上面给出的使用5V基准电压的8位A/D来说,其分辨率为19.5mV,也就是说,所有低于19.5mV的输入电压的输出值都为0,在19.5mV~39mV之间的输入电压的输出值为1,而在39mV~58.6mV之间的输入电压的输出值为3,以此类推。

提高分辨率的一种方法是降低基准电压,如果将基准电压从5V降到2.5V,则分辨率上升到2.5/256=9.7mV,但最高测量电压降到了2.5V。而不降低基准电压又能提高分辨率的唯一方法是增加A/D的数字位数,对于使用5V基准电压的12位A/D来说,其输出范围可达4096,其分辨率为1.22mV。

在实际的应用场合是有噪音的,显然该12位A/D会将系统中1.22mV的噪音作为其输入电压进行转换。如果输入信号带有10mV的噪音电压,则只能通过对噪音样本进行多次采样并对采样结果进行平均处理,否则该转换器无法对10mV的真实输入电压进行响应。

4.  累积精度

如果在放大器前端使用误差5%的电阻,则该误差将会导致12位A/D无法正常工作。也就是说,A/D的测量精度一定小于其转换误差、基准电压误差与所有模拟放大器误差的累计之和。虽然转换精度会受到器件误差的制约,但通过对每个系统单独进行定标,也能够得到较为满意的输出精度。如果使用精确的定标电压作为标准输入,且借助存储在MCU程序中的定标电压常数对所有输入进行纠正,则可以有效地提高转换精度,但无论如何无法对温漂或器件老化而带来的影响进行校正。

5.  基准源选型

引起电压基准输出电压背离标称值的主要因素是:初始精度、温度系数与噪声,以及长期漂移等,因此在选择一个电压基准时,需根据系统要求的分辨率精度、供电电压、工作温度范围等情况综合考虑,不能简单地以单个参数为选择条件。

比如,要求12 位A/D分辨到1LSB,即相当于1/212=244ppm。如果工作温度范围在10℃,那么一个初始精度为0.01%(相当于100ppm),温度系数为10ppm/℃(温度范围内偏移100ppm)的基准已能满足系统的精度要求,因为基准引起的总误差为200ppm,但如果工作温度范围扩大到15℃以上,该基准就不适用了。

6.  常用基准源

(1)初始精度的确定

初始精度的选择取决于系统的精度要求,对于数据采集系统来说,如果采用n位的ADC,那么其满刻度分辨率为1/2n,若要求达到1LSB的精度,则电压基准的初始精度为:

初始精度≤1/2n=1/2n×102%

如果考虑到其它误差的影响,则实际的初始精度要选得比上式更高一些,比如,按1/2LSB的分辨率精度来计算,即上式所得结果再除以2,即:

初始精度≤1/2n+1=1/2n+1×102%

(2)温度系数的确定

温度系数是选择电压基准另一个重要的参数,除了与系统要求的精度有关外,温度系数还与系统的工作温度范围有直接的关系。对于数据采集系统来说,假设所用ADC的位数是n,要求达到1LSB的精度,工作温度范围是ΔT,那么基准的温度系数TC可由下式确定:

同样地,考虑到其它误差的影响,实际的TC值还要选得比上式更小一些。温度范围ΔT通常以25℃为基准来计算,以工业温度范围-40℃~+85℃为例,ΔT可取60℃(85℃-25℃),因为制造商通常在25℃附近将基准因温度变化引起的误差调到最小。

图7.15 系统精度与基准温度系数TC的关系

如图7.15所示是一个十分有用的速查工具,它以25℃为变化基准,温度在1℃~00℃变化时,8~20位ADC在1LSB分辨精度的要求下,将所需基准的TC值绘制成图,由该图表可迅速查得所需的TC值。

TL431和REF3325/3330均为典型的电压基准源产品,详见表7.22。TL431的输出电压仅用两个电阻就可以在2.5~36V范围内实现连续可调,负载电流1~100mA。在可调压电源、开关电源、运放电路常用它代替稳压二极管。REF3325输出2.5V,REF3330输出3.0V。

表7.22 电压基准源选型参数表

REF33xx是一种低功耗、低压差、高精密度的电压基准产品,采用小型的SC70-3和SOT23-3封装。体积小和功耗低(最大电流为5μA)的特点使得REF33xx系列产品成为众多便携式和电池供电应用的最佳选择。在负载正常的情况下,REF33xx系列产品可在高于指定输出电压180mV的电源电压下工作,但REF3312除外,因为它的最小电源电压为1.8V。

图7.16 12bits系统基准选择

从初始精度和温漂特性来看,REF3325/3330均优于TL431,但是TL431的输出电压范围很宽,且工作电流范围很大,甚至可以代替一些LDO

由于基准的初始精度和温漂特性是影响系统整体精度的关键参数,因此它们都不能用于高精密的采集系统和高分辨率的场合。而对于12bits的AD来说,由于精度要求在0.1%左右的采集系统,到底选哪个型号呢?测量系统的初始精度,均可通过对系统校准消除初始精度引入的误差;对于温漂的选择,必须参考1LSB分辨精度来进行选择,详见图7.16。

如果不是工作在严苛环境下,通常工作温度为-10℃~50℃,温度变化在60℃,如果考虑0.1%系统精度,温度特性低于50ppm,则选择REF3325/3330。

7.6.2  A/D转换接口

AWorks提供了A/D转换接口,可以直接通过接口获取相应引脚输入的模拟电压大小。相关接口详见表7.23。

表7.23 ADC通用接口函数

1.  获取ADC通道的采样率

获取当前ADC通道的采样率,采样率的单位为Samples/s,表示每秒进行多少次采样。其函数原型为:

其中,ch为ADC的通道号,p_rate为输出参数,用以得到指定通道的采样率。返回值为标准的错误号,返回AW_OK时表示获取成功,否则,表示获取失败,失败的原因可能是通道号不存在。

通常情况下,一个A/D转换器往往支持多个通道,即可以支持多路模拟信号输入,在部分微控制器中,还存在多个A/D转换器。在AWorks中,为了区分各个模拟信号输入的通道,为每个通道定义了一个唯一的通道号。例如,在i.MX28x中,有LRADC和HSADC两个A/D转换器,它们分别支持16个通道和8个通道。各通道对应的编号在{chip}_adc_def.h文件中使用宏的形式进行了定义。例如,在i.MX28x中,各个通道号在imx28x_adc_def.h文件中定义如下:

由此可见,通过宏的形式,将通道号 0 ~ 23 使用了更具有意义的宏来表示。用户也可通过查看此文件获知当前硬件平台支持的ADC通道数目。

通道号的类型为aw_adc_channel_t,其本质上是一个无符号整数类型,具体的位宽与平台相关。如一个平台中仅支持24个通道,则其类型可能为uint8_t,即使用8位来表示通道号。获取通道0的采样率范例程序详见程序清单7.40。

程序清单7.40 获取采样率的范例程序

2.  设置ADC通道的采样率

由于采样频率必须大于或等于模拟信号中最高频率的2倍,才能够无失真地恢复原信号,因此,实际中,可能需要根据模拟信号的频率调整A/D转换器的采样率。设置某一通道采样率的函数原型为:

其中,ch为ADC的通道号,rate为设置的采样率。返回值为标准的错误号,返回AW_OK时表示设置成功,否则,表示设置失败。

一般情况下,若对采样率没有特殊的要求,使用默认的采样率即可。此外,A/D转换器可能只支持部分采样率,并不能支持任意的采样率,当使用该函数设置采样率时,系统会自动设定一个最为接近的采样率,因此,实际采样率可能与设置的采样率存在差异,实际采样率可由aw_adc_rate_get()函数获取。

注意,通常情况下,一个A/D转换器的所有通道共用一个采样率,因此,设置其中一个通道的采样率时,可能会影响其它通道的采样率。

设置通道0的采样率为1000的范例程序详见程序清单7.41。

程序清单7.41 设置采样率范例程序

设置采样率为1000 Samples/s。表示每秒采集1000个数据点,即每隔1毫秒采集一个数据点。

3.  获取ADC通道的基准电压

一般来讲,在对精度要求不是特别严格的场合,可以直接使用MCU的电源电压作为ADC的基准电压。但若对精度要求较高,往往需要使用具有更高精度的外部基准源电压作为ADC的基准电压。当前ADC实际使用的基准电压可通过该接口获得,其函数原型为:

其中,ch为ADC的通道号。基准电压通过返回值返回:若返回值大于0,则获取成功,其值即为基准电压(单位:mV);若返回值小于0,则获取失败。

获取通道0的基准电压范例程序详见程序清单7.42。

程序清单7.42 获取基准电压范例程序

例如,基准电压为2.5V,则vref的值为2500。

4.  获取ADC通道的转换位数

获取ADC通道的转换位数,其函数原型为:

其中,ch为ADC的通道号。转换位数通过返回值返回:若返回值大于0,则获取成功,其值即为转换位数;若返回值小于0,则获取失败。

获取通道0的转换位数范例程序详见程序清单7.43。

程序清单7.43 获取转换位数范例程序

如在i.MX28x中,LRADC和HSADC均为12位AD转换器,因此,bits的值为12。

5.  读取ADC通道的采样值

读取指定通道的采样值,其函数原型为:

其中,ch为ADC的通道号,p_val为存储采样值的缓冲区,samples指定本次采样的次数,urgent指定本次读取操作的优先级。返回值为标准的错误号,返回AW_OK时表示读取成功,否则,表示读取失败。

p_val指向用于存储采样值的缓冲区,缓冲区实际类型与ADC的位数相关:若ADC的位数为 1 ~ 8,则其类型为uint8_t;若ADC的位数为9 ~ 16,则其类型为uint16_t;若ADC的位数为 17 ~ 32,则其类型为uint32_t。例如,在i.MX28x中,ADC的位数为12,则应使用uint16_t类型的缓冲区来存储ADC的采样值。如定义一个大小为100的缓冲区,以存储100个采样值:

samples表示本次读取的采样值个数。实际应用中,每次读取操作往往会读取多个采样值,以便通过取平均值等方法对采样值进行处理,得到更加准确的结果。多个采样值将依次存放在p_val指向的缓冲区中,需确保p_val指向的缓冲区的大小与samples保持一致。

实际上,读取采样值的操作包含的完整过程为:首先需要启动ADC转换,然后等待转换完成(转换的时间与采样率相关),转换完成后,再将转换结果存储在用户提供的缓冲区中。显然,整个过程需要消耗一定的时间。虽然一个A/D转换器往往有多个通道,但某一时刻只能对某一个通道的输入进行转换,并不能同时转换多个通道。若当前A/D转换器正在转换中,则后续其它通道的转换请求就只能排队等待,urgent指定了转换请求的紧急性,其决定了排队的方式,若urgent为TRUE,表示紧急转换请求,排队时将插队到头部,以便当前A/D转换结束后,立即启动需要紧急转换的通道;若urgent为FALSE,则排队时将依次排至尾部。一般情况下,没有特殊需求,urgent均设置为FALSE。

读取100个采样值的范例程序详见程序清单7.44。

程序清单7.44 读取采样值的范例程序

此时,多个采样值存储在adc_val中,实际中,每次读取多个采样值只是为了通过处理得到一个更加精确的采样值,最简单的处理方法就是取平均值,范例程序详见程序清单7.45。

程序清单7.45 数据处理范例程序(取平均值)

注意,程序中,为了避免sum溢出,将sum的类型定义为了32位无符号数。最终的结果存储在code变量中。

至此,获得了一个较为精确的ADC采样值,但在实际使用A/D转换器时,其目的往往并非简单的获取一个ADC采样值,而是获取相应通道的电压值。可以通过基准电压和转换位数将code转换为电压值,公式如下:

式中,code为读取的编码值,Vref为基准电压,bits为ADC的位数。实际中,2的bits次方可以简化为移位运算,即:

获取通道0输入电压的完整范例程序详见程序清单7.46。

程序清单7.46 电压采集综合范例程序

在i.MX28x中,通道0对应的外部输入引脚时LRADC0引脚,运行程序后,可以通过向该引脚接入模拟电压来测试ADC采集的结果是否正确。

程序中,电压值的计算未使用到浮点运算,仅使用了整数运算,效率较高。但运算结果vol的值也只能精确的mV,若需要提高计算结果的精度,可以使用浮点数来存储计算的结果,将vol的类型定义为float,即:

同时,在计算电压值时,要确保表达式使用浮点运算,即:

原文标题:AWorks软件篇 — 通用外设接口(I²C、UART、ADC)

文章出处:【微信号:ZLG_zhiyuan,微信公众号:ZLG致远电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

浅析电磁流量计工程应用中的要点

在石化、化工、电力、冶金、市政、制药等行业,流量测量的技术难度和复杂程度都相当高,研究流量测量对于提....

的头像 工控资料窝 发表于 12-10 13:43 37次 阅读
浅析电磁流量计工程应用中的要点

用于电信应用3.3V 6A低噪声低成本隔离有源钳位正激转换器

描述             lowest noise and lowest cost isolated active clamp forward c...

发表于 12-10 11:44 19次 阅读
用于电信应用3.3V 6A低噪声低成本隔离有源钳位正激转换器

-28V 500mA负非同步升压转换器参考设计

描述             negative boost converter w/ TPS40200 - to boost a negativ...

发表于 12-10 11:35 32次 阅读
-28V 500mA负非同步升压转换器参考设计

12V输入的通用降压转换器含原理图和BOM表

描述             Universal buck converter provides up to 25A load current f...

发表于 12-10 11:26 33次 阅读
12V输入的通用降压转换器含原理图和BOM表

并行D/A转换器AD7237A及其接口设计

作者:孙文焕 程善美    1. 引言 AD7237A是美国AD公司推出的一种LC2MOS型双路12位数模转换器。它具有...

发表于 12-10 10:16 23次 阅读
并行D/A转换器AD7237A及其接口设计

数据转换器串行接口JEDEC标准十问十答

问:什么是8b/10b编码,为什么JESD204B接口需使用这种编码?   答:无法确保差分通道上的直流平衡信号不受随机非...

发表于 12-10 09:44 11次 阅读
数据转换器串行接口JEDEC标准十问十答

经验谈:设计DC/DC 转换器时,模拟技术引发的那些棘手问题

虽然大多数制造商已在电路中使用采购的开关模式电源,但他们通常对于在设计中使用第三方 dc="" 转换器仍然有所迟疑。其中有两个主...

发表于 12-10 09:21 102次 阅读
经验谈:设计DC/DC 转换器时,模拟技术引发的那些棘手问题

基于C语言的89C51与TLC2543AD转换器的驱动程序设计

发表于 12-09 12:06 7次 阅读
基于C语言的89C51与TLC2543AD转换器的驱动程序设计

做DA转换器选择模拟开关时没找到集成类的模拟开关

自己做一个DA转换器    选择模拟开关时  没找到集成类的模拟开关   有没有推荐的 型号? (二选...

发表于 12-08 16:17 2次 阅读
做DA转换器选择模拟开关时没找到集成类的模拟开关

48V 4A输出24V的200W单级升压转换器

描述             200W single stage boost converter, 48V @ 4A out of 24V i...

发表于 12-07 14:28 158次 阅读
48V 4A输出24V的200W单级升压转换器

3.3V 2.0A同步降压转换器PMP5640含BOM表和原理图

发表于 12-07 14:19 272次 阅读
3.3V 2.0A同步降压转换器PMP5640含BOM表和原理图

TI推出四种微型高精度数据转换器 每种均具有业界同类产品中最小尺寸

德州仪器(TI)今日推出四种微型高精度数据转换器,每种转换器均具有业界同类产品中最小尺寸。新数据转换....

发表于 12-07 09:36 70次 阅读
TI推出四种微型高精度数据转换器 每种均具有业界同类产品中最小尺寸

FE1.1s和FE2.1 USB2.0 Hub中英文使用数据手册及参考电路合集免费下载

FE1.1s是高度集成, 高质量, 高性能, 低能耗, 同时还是USB 2.0 高速4端口集线的低成....

发表于 12-06 08:00 26次 阅读
FE1.1s和FE2.1 USB2.0 Hub中英文使用数据手册及参考电路合集免费下载

隔离收发器的UL与CE认证需要测试什么项目?

ZLG隔离收发器通过美国UL、欧盟CE认证,打造世界级可靠性性隔离收发器,适用于各类工业CAN、RS....

的头像 人间烟火123 发表于 12-05 16:48 1328次 阅读
隔离收发器的UL与CE认证需要测试什么项目?

Silicon Labs电容触摸系列MCU的CDC工作原理

现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC面世。与此同时,高灵敏度....

发表于 12-02 10:01 88次 阅读
Silicon Labs电容触摸系列MCU的CDC工作原理

基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

电源设计工程师通常在汽车系统中使用一些DC/DC降压变换器来为多个电源轨提供支持。然而,在选择这些类....

发表于 11-30 13:48 632次 阅读
基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

如何进行一个微弱信号检测的前置放大电路的设计

针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构....

发表于 11-30 10:38 58次 阅读
如何进行一个微弱信号检测的前置放大电路的设计

了解隔离设计,就在这里

集成隔离式DC-DC转换器的出现,提供了一个紧凑、易用的解决方案,并具有文档化的安全认证,使得上述诸....

的头像 电机控制设计加油站 发表于 11-29 17:17 538次 阅读
了解隔离设计,就在这里

如何使用STM8官方库控制BLDC的详细资料说明

本文档的主要内容详细介绍的是如何使用STM8官方库控制BLDC的详细资料说明免费下载。

发表于 11-29 16:43 49次 阅读
如何使用STM8官方库控制BLDC的详细资料说明

安川信号转换器的选型手册和数据资料免费下载

接口接力系列是用于连接编码器和伺服系统的信号转换器。从简单的信号水平转换到复杂的A / D /,D ....

发表于 11-27 08:00 31次 阅读
安川信号转换器的选型手册和数据资料免费下载

MK7A23P高性能8位微控制器的中文数据手册免费下载

首先很高兴遇见您!能见到这颗芯片说明我们很有缘份,今天我做了一个决定,我决定只卖这颗芯片,为什么呢?....

发表于 11-27 08:00 38次 阅读
MK7A23P高性能8位微控制器的中文数据手册免费下载

MK7A23P高性能8位微控制器的英文数据手册免费下载

首先很高兴遇见您!能见到这颗芯片说明我们很有缘份,今天我做了一个决定,我决定只卖这颗芯片,为什么呢?....

发表于 11-27 08:00 36次 阅读
MK7A23P高性能8位微控制器的英文数据手册免费下载

Xilinx集成模数转换器的电压和温度测量

了解集成的模数转换器及其测量内部(电压和温度)和外部传感器的能力。

的头像 Xilinx视频 发表于 11-26 06:32 220次 观看
Xilinx集成模数转换器的电压和温度测量

转换器怎么用

光纤转换器怎么用?作为光纤接入设备之一,这个设备具有光纤接口还有 网线 接口。网线接口一般是 五类线....

的头像 发烧友学院 发表于 11-24 09:39 571次 阅读
转换器怎么用

da转换器性能指标

da转换器是将数字量转换为模拟量的电路,主要用于数据传输系统、自动测试设备、医疗信息处理、电视信号的....

的头像 发烧友学院 发表于 11-24 09:21 381次 阅读
da转换器性能指标

业界首款NVMe-oF SSD转换器控制器能够降低总体拥有成本

Marvell 88SN2400能够将NVMe SSD转换为NVMe-oF SSD,实现最佳的高性能....

发表于 11-23 17:10 308次 阅读
业界首款NVMe-oF SSD转换器控制器能够降低总体拥有成本

转换器是什么

转换器(converter)是指将一种信号转换成另一种信号的装置。信号是信息存在的形式或载体。在自动....

的头像 发烧友学院 发表于 11-23 15:51 371次 阅读
转换器是什么

转换器的作用是什么

光纤转换器的作用要从它的结构说起,首先对于这类设备具有的结构就是光口和电口。它们的作用就是用来接收光....

的头像 发烧友学院 发表于 11-23 15:47 473次 阅读
转换器的作用是什么

MX7541 DA转换器和MAX9760音频功率放大器的资料概述

美国美信公司生产的MX7541 系列器件是一种12 位并行高速D/ A 转换器, 此芯片可方便地应用....

发表于 11-22 17:36 62次 阅读
MX7541 DA转换器和MAX9760音频功率放大器的资料概述

RTC时钟偶发性延时和超前现象解决方案

在非常温的工作环境下,RTC时钟出现偶发性的延时或者超时现象,成熟的RTC电路设计看似简单,但如何保....

的头像 人间烟火123 发表于 11-21 14:57 2504次 阅读
RTC时钟偶发性延时和超前现象解决方案

双11快递“次日送达”背后的无线技术

我国作为全球第二大经济体,是全球第一制造业大国,带动物流市场呈供需两旺态势。目前我国社会物流总费用超....

的头像 人间烟火123 发表于 11-21 14:36 2551次 阅读
双11快递“次日送达”背后的无线技术

Zynq UltraScale+ RFSoC的功能特点与应用

在本演示视频中,Xilinx讨论了其Zynq®UltraScale+™RFSoC系列的产品详细信息。

的头像 Xilinx视频 发表于 11-21 06:07 168次 观看
Zynq UltraScale+ RFSoC的功能特点与应用

使用单片机设计的室内空气净化系统资料合集免费下载

本文档的主要内容详细介绍的是使用单片机设计的室内空气净化系统资料合集免费下载,可以烧录到开发板。有芯....

发表于 11-19 08:00 55次 阅读
使用单片机设计的室内空气净化系统资料合集免费下载

Convert v2.1版波特率转换器的使用手册免费下载

一、设备概述 实现串口通讯链路上的数据传输速度、传输格式等的匹配功能。 适用于RS232、RS4....

发表于 11-15 10:28 39次 阅读
Convert v2.1版波特率转换器的使用手册免费下载

IP5209具有多功能电源管理SOC移动电源的电源解决方案

IP5209 是一款集成升压转换器、锂电池充电管理、电池电量指示的多功能电源管理 SOC,为移动电源....

发表于 11-13 08:00 80次 阅读
IP5209具有多功能电源管理SOC移动电源的电源解决方案

IP5508多功能电源管理SOC解决方案的数据手册免费下载

IP5508 是一款集成升压转换器、锂电池充电管理、电池电量指示的多功能电源管理 SOC,为数码管显....

发表于 11-13 08:00 66次 阅读
IP5508多功能电源管理SOC解决方案的数据手册免费下载

FE2.1 USB 2.0高速七端口集线器控制器的详细资料和数据手册免费下载

FE2.1是USB 2.0高速7端口集线器的高度集成、高质量、高性能、低功耗、但总体成本低的解决方案....

发表于 11-13 08:00 58次 阅读
FE2.1 USB 2.0高速七端口集线器控制器的详细资料和数据手册免费下载

AnyWattUSBPD转换器评测 值不值得购买

有幸获得了AnyWatt PPS MacBook电源转接器的免费试用资格,万分高兴,恰好买了小米6手....

的头像 39度创意研究所 发表于 11-12 10:56 276次 阅读
AnyWattUSBPD转换器评测 值不值得购买

专家视频分析:英特尔应力比特流和编码器

英特尔®应力比特流和编码器有助于提供高质量的VP9,HEVC和AVS 2.0视频流。

的头像 英特尔 Altera视频 发表于 11-09 06:53 170次 观看
专家视频分析:英特尔应力比特流和编码器

针对低压Buck转换器工作中的EMI问题进行很基础的分析

当上桥MOSFET Q1导通的时候,电流从电源流出,经Q1和L1后进入输出电容和负载,再经地线回流至....

的头像 电源研发精英圈 发表于 11-08 11:20 453次 阅读
针对低压Buck转换器工作中的EMI问题进行很基础的分析

AXP223高度集成的电力系统管理集成电路的数据手册免费下载

AXP223被设计成一个高度集成的电力系统管理集成电路,它针对需要单电池锂电池(Li-Ion/Pol....

发表于 11-07 08:00 159次 阅读
AXP223高度集成的电力系统管理集成电路的数据手册免费下载

SD8806P电子称重仪表的数据和使用手册免费下载

SD8806P是面向工业控制领域(或其他需要模拟量输出的应用场所)的电子称重仪表。前端信号处理采用高....

发表于 11-06 18:25 51次 阅读
SD8806P电子称重仪表的数据和使用手册免费下载

韩国开发夹层式生物传感器技术

生物传感器有可能彻底改变我们监测人体、病原体、食物和环境污染物的方式。据麦姆斯咨询报道,来自韩国高丽....

的头像 MEMS 发表于 11-05 09:52 354次 阅读
韩国开发夹层式生物传感器技术

XL30XX系列降压恒流产品设计指南

本文档的主要内容详细介绍的是XL30XX系列降压恒流产品设计指南 输入电容起到储能、滤波与提供瞬态....

发表于 11-05 08:00 44次 阅读
XL30XX系列降压恒流产品设计指南

CP2102 USB串口转换器模块使用说明资料免费下载

本品为本公司自主研发的 USB 串口转换器,采用 CP2102 芯片,高速,稳定!超小!通过巧妙的设....

发表于 11-05 08:00 73次 阅读
CP2102 USB串口转换器模块使用说明资料免费下载

关于电压转换器使用注意事项

电压转换器,它是变压器当中的一个类别,也就是我们常常说到的家用变压器,说明其适用于家庭当中。也会被称....

发表于 11-02 17:33 248次 阅读
关于电压转换器使用注意事项

压电薄膜材料的性能与性能特点

与其他介质薄膜一样,压电薄膜的击穿场强还依从于一些外部因素,如电压波形、频率、温度和电极等。因为压电....

的头像 传感器技术 发表于 11-02 16:12 834次 阅读
压电薄膜材料的性能与性能特点

电能表的的工作原理、测量及未来发展

电能表作为电力系统中非常重要的一个部分,主要是对电路中消耗的电能量进行测量。随着时代的发展和社会经济....

的头像 传感器技术 发表于 11-02 15:53 877次 阅读
电能表的的工作原理、测量及未来发展

功率电感器的啸叫原因以及有效对策

PWM调光通过200Hz左右的较低频率使DC-DC转换器进行间歇工作,并通过反复进行亮灯/熄灭操作来....

的头像 传感器技术 发表于 11-01 11:22 636次 阅读
功率电感器的啸叫原因以及有效对策

LDO稳压器的基本原理及RCC电路的彻底解析详细资料免费下载

在输出小于 50W 的小型开关电源系统中,目前在设计上有很多种,但 RCC 方式被运用的可以说是最多....

发表于 11-01 08:00 121次 阅读
LDO稳压器的基本原理及RCC电路的彻底解析详细资料免费下载

MGJ系列DC-DC转换器的介绍和应用的详细资料概述

在高功率,逆变器或转换器通常使用“桥”配置来产生线频交流或提供双向PWM驱动到电机,变压器或其他负载....

发表于 10-29 08:00 79次 阅读
MGJ系列DC-DC转换器的介绍和应用的详细资料概述

隔离式DC-DC转换器解决方案如何消除隔离设计的隐藏成本

不可否认,电气系统变得更小、更轻,汽车电气化就是一个最好的例子。专业服务公司普华永道 (PwC) 预....

的头像 电机控制设计加油站 发表于 10-28 10:48 638次 阅读
隔离式DC-DC转换器解决方案如何消除隔离设计的隐藏成本

小尺寸、高性能的车用USB Type-C电源解决方案

在汽车或便携式电子设备环境中工作的电压调节器系统的设计,受到电路的空间需求以及工作时产生的热量的限制....

的头像 电机控制设计加油站 发表于 10-26 15:58 992次 阅读
小尺寸、高性能的车用USB Type-C电源解决方案

基于FPGA的ADS8341控制器设计

由图1可以看出,ADS8341完成一次转换需要24个DCLK时钟,其中在前8个时钟的上升沿,DIN控....

的头像 电子发烧友网工程师 发表于 10-26 14:50 669次 阅读
基于FPGA的ADS8341控制器设计

苹果造车业务的轮廓,已经基本成型

近日,美国专利局公布了苹果公司最新专利,该专利名为“转换器架构”,可将驱动电池的高压电源的功率转换为....

的头像 电子发烧友网工程师 发表于 10-26 14:43 784次 阅读
苹果造车业务的轮廓,已经基本成型

51单片机教程之51单片机应用系统设计实例资料说明

数据采集系统设计的主要内容通常包含硬件(连同单片微机在内的全部电子线路) 、软件(包括监控管理程序及....

发表于 10-26 11:50 53次 阅读
51单片机教程之51单片机应用系统设计实例资料说明

介绍常用的4线SPI接口

图2至图5显示了四种SPI模式下的通信示例。在这些示例中,数据显示在MOSI和MISO线上。传输的开....

的头像 FPGA开发圈 发表于 10-25 11:37 1313次 阅读
介绍常用的4线SPI接口

2N7000和2N7002及NDS2N7000AN沟道增强型场效应晶体管的数据手册

这些N通道增强模式场效应转换器是使用F空童的专有技术,高信元密度,DMOS技术生产的。这些产品被设计....

发表于 10-25 11:16 83次 阅读
2N7000和2N7002及NDS2N7000AN沟道增强型场效应晶体管的数据手册

30V的驱动晶体管降压DC/DC转换器

可以从300kHz/500kHz中选择开关频率。此外,通过MODE/SYNC端子,在内部CLK±25....

的头像 Torex产品资讯 发表于 10-24 14:36 411次 阅读
30V的驱动晶体管降压DC/DC转换器

如何提高功率因数校正的效率从待机到满负荷的详细解决方案概述

数字功率因数控制通过根据当前的负载条件合成波形来寻求提高效率,但是最新的线性结构可以提供更简单的解决....

发表于 10-24 08:00 95次 阅读
如何提高功率因数校正的效率从待机到满负荷的详细解决方案概述

SN74GTLPH16945 16 位 LVTTL 到 GTLP 总线收发器

SN74GTLPH16945是一款中等驱动的16位总线收发器,可提供LVTTL到GTLP和GTLP到LVTTL的信号电平转换。它被划分为两个8位收发器。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准TTL或LVTTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全适用于使用I off 的上电插入应用,上电3状态,BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数据,并允许真正的实时插入功能。 该GTLP器件具有TI-OPC电路,可有效限制由于背板不正确,卡分布不均匀或在低到高信号转换期间出现空插槽而导致的...

发表于 10-16 11:16 2次 阅读
SN74GTLPH16945 16 位 LVTTL 到 GTLP 总线收发器

SN74GTLP2033 具有独立 LVTTL 端口和反馈路径的 8 位 LVTTL-GTLP 可调节边沿速率寄存收发器

SN74GTLP2033是一款高驱动,8位,3线注册收发器,可提供反向LVTTL至GTLP和GTLP至LVTTL信号级翻译。该器件支持透明,锁存和触发器数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径,功能与SN74FB2033相同。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( LVTTL接口具有5 V容差 高驱动GTLP漏极开路输出(100 mA) LVTTL输出(\ x9624 mA /24 mA) 可变边沿速率控制(ERC)输入选择GTLP上升和下降时间,以实现分布式负载中的最佳数据传输速率和信号完整性 I off ,上电3状态和BIAS V CC 支持实时插入 分布式V CC 和GND引脚最小化高速开关噪声锁存-Up性能超过每JESD 78 mA,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 1000 -V充电设备型号(C101) OEC,TI-OPC和Widebus是Texas Instruments的商标。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器...

发表于 10-16 11:16 0次 阅读
SN74GTLP2033 具有独立 LVTTL 端口和反馈路径的 8 位 LVTTL-GTLP 可调节边沿速率寄存收发器

SN74GTLPH1645 16 位 LVTTL 到 GTLP 可调节边沿速率总线收发器

SN74GTLPH1645是一款高驱动,16位总线收发器,可提供LVTTL到GTLP和GTLP到LVTTL的信号电平转换。它被划分为两个8位收发器。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( A端口数据输入的总线保持 分布式V CC 和GND引脚最大限度地降低高速开关噪声 闩锁性能超过100 mA根据JESD 78,Class II OEC,TI-OPC和Widebus是Texas Instruments的商标。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) tpd @ Nom Voltage (Max) (ns) IOL (Max) (mA) IOH (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package   var link = "zh_CN_folder_p_quick_link_description_features_parametrics"; com.TI...

发表于 10-16 11:16 4次 阅读
SN74GTLPH1645 16 位 LVTTL 到 GTLP 可调节边沿速率总线收发器

SN74GTLP1395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 - 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( GTLP是德州仪器Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3的衍生产品。 SN74GTLP1395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF < /sub> = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,文献编号SCEA019和BTL应用中的 GTLP ,文献编号SCEA017。 通常,B端口工...

发表于 10-16 11:16 5次 阅读
SN74GTLP1395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTL16616 具有缓冲时钟输出的 17 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL16616是一个17位的UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。组合的D型触发器和D型锁存器允许透明,锁存,时钟和时钟使能的数据传输模式,与'16601功能相同。此外,该器件还提供了GTL /GTL +信号电平(CLKOUT)的CLKAB副本以及GTL /GTL +时钟转换为LVTTL逻辑电平(CLKIN)。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(...

发表于 10-16 11:16 4次 阅读
SN74GTL16616 具有缓冲时钟输出的 17 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74FB1653 具有缓冲时钟线路的 17 位 LVTTL/BTL 通用存储收发器

SN74FB1653包含一个带缓冲时钟的8位和9位收发器。时钟和收发器设计用于在LVTTL和BTL环境之间转换信号。该器件专为与IEEE Std 1194.1-1991(BTL)兼容而设计。 A端口工作在LVTTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC (5 V)通常小于2.5 V时,A输出处于高阻态。 B端口工作于BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB)\。当OEB为低电平时,OEB \为高电平,或者V CC (5 V)通常小于2.5 V,B端口关闭。 时钟选择( 2SEL1和2SEL2)输入用于配置TTL到BTL时钟路径和延迟(参见 MUX-MODE DELAY 表)。 BIAS V CC当未连接V CC (5 V)时,在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 V REF 是内部产生的电压源。建议将V REF 与0.1μF电容去耦。 当此设备从AI到A0以大于50的频率运行时,应使用增强的散热技术频率大于100 MHz时,或从AI到B \或B \到A0。 特性 与IE...

发表于 10-16 11:16 0次 阅读
SN74FB1653 具有缓冲时钟线路的 17 位 LVTTL/BTL 通用存储收发器

SN74GTL2010 10 位钳位电压

GTL2010提供10个NMOS传输晶体管(Sn和Dn),共栅极(G REF )和参考晶体管( S REF 和D REF )。开关的低导通电阻允许以最小的传播延迟进行连接。由于不需要方向控制引脚,该器件允许双向电压转换任何电压(1 V至5 V)至任何电压(1 V至5 V)。 当Sn或Dn端口为低电平时,钳位处于ON状态,Sn和Dn端口之间存在低电阻连接。假设Dn端口上的电压较高,当Dn端口为高电平时,Sn端口上的电压限制为参考晶体管设置的电压(S REF )。当Sn端口为高电平时,通过上拉电阻将Dn端口拉至V CC 。 GTL2010中的所有晶体管都具有相同的电气特性,在电压或传播延迟方面,从一个输出到另一个输出的偏差最小。这提供了优于分立晶体管电压转换解决方案的匹配,其中晶体管的制造不对称。在所有晶体管相同的情况下,参考晶体管(S REF /D REF )可以位于其他十个匹配的Sn /Dn晶体管中的任何一个上,从而实现更简单的电路板布局。具有集成ESD电路的转换器晶体管可提供出色的ESD保护。 特性 提供无方向控制的双向电压转换 允许电压电平从1 V升至5 V 提供与GTL,GTL +,LVTTL /TTL和5-V CM...

发表于 10-16 11:16 6次 阅读
SN74GTL2010 10 位钳位电压

SN74FB2040 8 位、TTL/BTL 收发器

SN74FB2040是一款8位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。 B \ port以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为高电平且OEB \为低电平时,B \ n端口有效并反映A输入引脚上存在的数据的反转。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平并有独立的输入和输出引脚。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 引脚TMS,TCK,TDI和TDO均为非功能性的,即不适用于IEEE Std 1149.1(JTAG)测试总线。 TMS和TCK未连接,TDI短接至TDO。 BIAS V CC 在V CC时在BTL输出上建立1.62 V至2.1 V之间的电压未连接。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC < /sub>引脚最小化实时插...

发表于 10-16 11:16 2次 阅读
SN74FB2040 8 位、TTL/BTL 收发器

SN74GTL16612 18 位 LVTTL 至 GTL/GTL+ 通用总线收发器

'GTL16612器件是18位UBT ??提供LVTTL到GTL /GTL +和GTL /GTL +到LVTTL信号电平转换的收发器。它们结合了D型触发器和D型锁存器,可实现与'16601功能相同的透明,锁存,时钟和时钟使能模式的数据传输。这些器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(

发表于 10-16 11:16 6次 阅读
SN74GTL16612 18 位 LVTTL 至 GTL/GTL+ 通用总线收发器

SN74FB2033A 8 位 TTL/BTL 寄存收发器

SN74FB2033A是一款8位收发器,在TTL电平A端口上具有分离输入(AI)和输出(AO)总线。通用I /O,集电极开路B \ n端口工作在背板收发器逻辑(BTL)信号电平。 每个方向的数据流逻辑元素由两个模式输入(B-to-A的IMODE1和IMODE0,A-to-B的OMODE1和OMODE0)配置为缓冲区,D-类型触发器或D型锁存器。在缓冲模式下配置时,反向输入数据出现在输出端口。在触发器模式下,数据存储在相应时钟输入(CLKAB /LEAB或CLKBA /LEBA)的上升沿。在锁存模式下,时钟输入用作高电平有效透明锁存器使能。 无论选择何种逻辑元素,B-to-A方向的数据流都由LOOPBACK输入进一步控制。当LOOPBACK为低电平时,B \ -port数据是B-to-A输入。当LOOPBACK为高电平时,所选A-to-B逻辑元件的输出(反转之前)是B-to-A输入。 AO端口启用/-disable控件由OEA提供。当OEA为低电平或V CC 小于2.5 V时,AO端口处于高阻态。当OEA为高电平时,AO端口处于活动状态(逻辑电平为高或低)。 B \ port由OEB和OEB \控制。如果OEB为低电平,OEB \为高电平,或者V CC 小...

发表于 10-16 11:16 2次 阅读
SN74FB2033A 8 位 TTL/BTL 寄存收发器

SN74FB2031 9 位 TTL/BTL 地址/数据收发器

SN74FB2031是一款9位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \端口以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口以TTL信号电平工作。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 针对四线IEEE Std 1149.1(JTAG)测试总线分配引脚,尽管目前还没有计划发布JTAG特性版本。 TMS和TCK未连接,TDI与TDO短路。 当V CC 未连接时,BIAS V CC 在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC < /sub>最小化实时插入或拔出期间...

发表于 10-16 11:16 2次 阅读
SN74FB2031 9 位 TTL/BTL 地址/数据收发器

SN74FB1650 18 位 TTL/BTL 通用存储收发器

SN74FB1650包含两个9位收发器,用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \ n端口工作在BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 BIAS V CC 建立当未连接V CC 时,BTL输出上的电压介于1.62 V和2.1 V之间。 BG V CC 和BG GND是电源输入用于偏置发生器。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA BIAS V CC 最大限度地减少实时插入或拔出期间的信号失真 上电和断电期间的高阻抗状态 B \ - 端口偏置网络预先连接器和PC跟踪到BTL高电平电压 TTL输入结构包含有效在线终止时紧急援助 参数 与其它产品相...

发表于 10-16 11:16 7次 阅读
SN74FB1650 18 位 TTL/BTL 通用存储收发器

SN10KHT5574 具有 D 类边沿触发器和三态输出的八路 ECL 至 TTL 转换器

这个八进制ECL到TTL转换器旨在提供10KH ECL信号环境和TTL信号环境之间的有效转换。该器件专门用于提高ECL-to-TTL CPU /总线导向功能的性能和密度,如存储器地址驱动器,时钟驱动器和面向总线的接收器和发送器。 八SN10KHT5574的触发器是边沿触发的D型触发器。在时钟正跳变时,Q输出设置为在D输入端设置的逻辑电平。 缓冲输出使能输入( OE ”可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗第三状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能输入 OE < /span>不会影响触发器的内部操作。输出关闭时,可以保留旧数据或输入新数据。 SN10KHT5574的特点是在0°C至75°C的温度范围内工作。 特性 10KH兼容 ECL时钟和TTL控制输入 流通式架构优化PCB布局 中心引脚V CC ,V EE 和GND配置最大限度地降低高速开关噪声 封装选项包括“小”概述“包装和标准塑料DIP 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) ...

发表于 10-16 11:16 6次 阅读
SN10KHT5574 具有 D 类边沿触发器和三态输出的八路 ECL 至 TTL 转换器

SN74GTLPH1655 16 位 LVTTL 到 GTLP 可调节边缘速率通用总线收发器

SN74GTLPH1655是一款高驱动,16位UBT ??提供LVTTL到GTLP和GTLP到LVTTL信号电平转换的收发器。它被划分为两个8位收发器,并允许透明,锁存和时钟模式的数据传输。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( 可变边沿速率控制(ERC)输入为分布式负载中的最佳数据传输速率和信号完整性选择GTLP上升和下降时间 I off ,上电三态和BIAS V CC 支持实时插入 A端口数据输入上的总线保持 分布式V CC < /sub>和GND引脚最大限度地降低高速开关噪声 闩锁性能超过100 JESD 78,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 200-V机器型号(A115-A) 1000-V充电设备模型(C101) OEC,TI,TI-OPC,UBT和Widebus是德州仪器公司的商标。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ N...

发表于 10-16 11:16 11次 阅读
SN74GTLPH1655 16 位 LVTTL 到 GTLP 可调节边缘速率通用总线收发器

SN74GTLP21395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP21395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 - 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( Y输出设计用于吸收高达12 mA的电流,包括等效的26- 电阻器可减少过冲和下冲。 GTLP是德州仪器(TI)衍生的Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3。 SN74GTLP21395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF < /sub> = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,...

发表于 10-16 11:16 2次 阅读
SN74GTLP21395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1394 具有独立 LVTTL 端口、反馈路径和可选择极性的 2 位 LVTTL 到 GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1394是一款高驱动,2位,3线总线收发器,可提供LVTTL至GTLP和GTLP至LVTTL信号 - 级别翻译。它允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专门设计用于与德州仪器1394背板物理层控制器配合使用。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全指定用于使用I off 的上电插入应用,上电3 -state和BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数...

发表于 10-16 11:16 22次 阅读
SN74GTLP1394 具有独立 LVTTL 端口、反馈路径和可选择极性的 2 位 LVTTL 到 GTLP 可调节边沿速率总线 Xcvrs

SN74GTL1655 可带电插入 16 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL1655是高驱动(100 mA),低输出阻抗(12 )16位UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。该器件被划分为两个8位收发器,并结合了D型触发器和D型锁存器,以实现类似于?? 16501功能的透明,锁存和时钟数据传输模式。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(

发表于 10-16 11:16 26次 阅读
SN74GTL1655 可带电插入 16 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL2007 12 位 GTL-/GTL/GTL+ 至 LVTTL 转换器

SN74GTL2007是一个12位转换器,用于连接3.3V LVTTL芯片组I /O和Xeon。处理器GTL- /GTL /GTL + I /O.该器件专为双处理器应用中的平台运行状况管理而设计。 特性 作为GTL- /GTL /GTL +运行至LVTTL或LVTTL至GTL- /GTL /GTL +转换器 系列终止TTL输出30 闩锁测试完成JEDEC标准JESD 78 根据JESD测试的ESD性能22 2000-V人体模型(A114-B,II类) 200-V机器模型(A115- A) 1000-V充电设备型号(C101) 所有商标均为其各自所有者的财产。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) tpd @ Nom Voltage (Max) (ns) IOL (Max) (mA) IOH (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package   var link = "zh_CN_folder_p_quick_link_description_features_parametri...

发表于 10-16 11:16 33次 阅读
SN74GTL2007 12 位 GTL-/GTL/GTL+ 至 LVTTL 转换器

SN74GTL3004 可选 GTL 电压基准

SN74GTL3004提供可选的GTL参考电压(GTL V REF )。可以使用S0和S1选择引脚调整GTL V REF 的值。 S0和S1引脚包含毛刺抑制电路,具有出色的抗噪性。悬空时,S0和S1控制输入引脚具有100kμ上拉,将GTL V REF 默认值设置为0.67×V TT 比例(S0 = 1且S1 = 1)。 特性 V DD 范围:3.0 V至3.6 V V TT < /sub>范围:1 V至1.3 V 提供可选择的GTL V REF 0.615×V TT 0.63×V TT 0.65×V TT 0.67×V TT ±1%电阻比容差 环境温度范围:-40°C至85°C ESD保护超过以下水平测试(按JESD-22测试): 2500-V人体模型(A114-B,II类) 250-V机器模型(A115) -A) 1500 V充电设备型号(C101) 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) VCC (Max) (V) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package ...

发表于 10-16 11:10 27次 阅读
SN74GTL3004 可选 GTL 电压基准

SN74GTL2014 4 位 LVTTL 至 GTL 收发器

SN74GTL2014是一款4通道转换器,用于连接3.3V LVTTL芯片组I /O与Xeon处理器GTL- /GTL /GTL + I /O。 SN74GTL2014在所有端子上集成了ESD保护单元,并且采用TSSOP封装(5.0mm×4.4mm)。器件在自然通风环境下的额定工作温度范围为-40°C至85 °C。要了解所有可用封装,请见数据表末尾的可订购产品附录。 特性 可用作GTL- /GTL /GTL +至LVTTL转换器或LVTTL至GTL- /GTL /GTL +转换器 < li> LVTTL输入最高可承受5.5V电压,允许直接访问TTL或5V CMOS GTL输入/输出工作电压高达3.6V,这使得器件可在高压开漏应用中使用 VREF可降至0.5V,以实现低电压CPU使用率 支持局部断电 锁断保护超过500mA,符合JESD78规范的要求 封装选项:TSSOP14 -40°C至+ 85°C工作温度范围 所有端子上具备静电放电(ESD)保护 2000V人体模型(HBM),JESD22-A114 1000V充电器件模型(CDM),IEC61000-4-2 应用< /h2> 服务器 基站 有线通信 所有商标均为其各自所有者的财产。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器...

发表于 10-16 11:10 19次 阅读
SN74GTL2014 4 位 LVTTL 至 GTL 收发器