0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

太赫兹成像应用于安检THz成像的发展趋势

MEMS 来源:未知 作者:李倩 2018-03-29 11:09 次阅读

工欲善其事,必先利其器。在全球化的今天,专利已不仅仅是创新的一种保护手段,它已成为商业战场中的利器。麦姆斯咨询倾情打造MEMS传感器以及物联网领域的专利运营平台,整合全产业链知识产权资源,积极推动知识产权保护与有效利用。THz(太赫兹)成像是THz技术的重要应用方向之一,1995年,B.B.Hu和M.C.Nuss利用THz时域光谱系统实现了对新鲜树叶和集成电路的扫描成像,该工作被视为THz成像领域的里程碑,直观而清晰的透射扫描图像证明了THz波在成像领域的巨大潜力。特别是由红外量子级联激光器(Quantum cascade laser, QCL)发展而来的THz QCL在成像方面的潜力也引起了广泛的关注,这类器件具备输出功率高、单频性好和体积小易集成等特点,作为THz源被各种成像技术及系统所采用。

THz波介于毫米波和红外光之间,与毫米波或微波成像相比,THz波成像可以获得更高的分辨率,因为THz波具有更短的波长;与红外相比,THz波可以穿透很多红外无法透过的材料,如纸张,塑料,陶瓷和半导体等,完成对隐藏目标物体的成像;与在医学成像和安检成像等领域广泛应用的X射线相比,THz波具有更低的能量(1THz~4meV),可以弥补X射线容易对人体造成辐射损伤这一明显缺点,同时对低密度物质成像的对比度又要优于X射线,基于上述优点,THz成像应用领域主要涉及隐蔽目标探测、安检成像、无损检测和癌变生物组织识别。

太赫兹成像应用于安检THz成像的发展趋势是研制更加实用化的THz成像探测设备,不断向着实时性、高分辨率、远距离和便携式等方向发展。采用的技术手段主要包括:优化扫描方式、合成孔径技术和阵列接收技术等。在新型THz成像技术方面,基于THz QCL的成像技术是未来THz成像领域一个重要的发展方向之一。对于现有的太赫兹成像系统,由于在探测器与传输光路之间设置分束片,使得进入探测器的太赫兹光先经过分束片反射,由此极大降低了入射信号的强度,导致了信号具有较大的干扰,并且入射信号的收集效率也急剧下降。

推荐发明专利】《太赫兹二维成像系统及成像方法》【发明内容】本发明在于提供一种太赫兹二维成像系统及成像方法,用于解决现有的成像系统中进入探测器的入射信号强度低、干扰大、且收集效率低的问题。

本发明所述成像系统的系统框图

太赫兹量子级联激光器模块的结构示意图及光路传输路径本发明的太赫兹二维成像系统通过将第一镜体内置于太赫兹量子级联激光器的出光口,不仅实现了激光器模块直接发射平行的太赫兹光,还减小了成像系统的体积及复杂度;而且通过将传输至光路传输模块的太赫兹光设置为平行的太赫兹光束,大大减小了光的损耗。此外,通过将第二镜体内置与探测器的前端,不仅实现了太赫兹光的会聚,还进一步减小了成像系统的体积及复杂度。

而且,通过太赫兹量子级联激光器模块、载物台模块、光路传输模块及数据采集模块重新设置了太赫兹光的传输路径,避免了分束片的使用,减小了光的损耗和光束干扰,提高了成像信噪比;最后,通过光路传输模块将入射至数据采集模块的太赫兹光设置为平行的太赫兹光束,增大了探测器的收集效率,提高了信号强度及成像效果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像系统
    +关注

    关注

    2

    文章

    174

    浏览量

    13795
  • 太赫兹
    +关注

    关注

    10

    文章

    327

    浏览量

    28829

原文标题:感知“利”器|太赫兹二维成像系统及成像方法

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    赫兹时域光谱技术及激光雷达光谱探测误差分析与实验验证

    脉冲宽度为10 ns,并初步探讨了影响实验结果的几种因素,提出将激光雷达光谱探测技术与赫兹时域光谱技术相结合,并采用现代模式识别、信号处理技术是生物化学战剂爆炸物实时光谱检测技术的发展趋势。【关键词
    发表于 04-23 11:32

    赫兹射线在反恐安全检查领域的应用

    探测,这种依靠飞秒激光技术发展起来的新技术,正在对未来的生活、着装和安防产生巨大的影响。赫兹光谱研究成像技术的发展,将使安保进入一种崭新的
    发表于 05-28 07:00

    赫兹THz)光谱在生物大分子研究中有何应用?

    赫兹THz)辐射是一种新型的远红外相干辐射源,近年来在生物大分子研究中得到了广泛的应用,特别是在生物分子的结构和动力学特性等方面有着巨大的应用潜力. 本文结合THz 光谱的特点,介
    发表于 05-29 07:40

    如何解析赫兹波?

    赫兹THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,
    发表于 05-29 07:33

    赫兹物理频段相关典型应用发展趋势

    并未针对275~3000 GHz频段进行划分。国际电信联盟无线电通信局认为,迅速地了解全球于275 GHz频点以上物理频段内提供有源业务服务在当前的技术发展趋势是很有必要的,可以及时地掌握THz
    发表于 06-18 07:44

    浅析赫兹技术应用

      赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红
    发表于 07-03 07:57

    超强赫兹辐射是怎么产生的?

    赫兹辐射(THz)在材料光谱分析、断层摄影成像、生物材料表征等方面有广泛的应用前景。THz成像
    发表于 08-05 08:22

    测试测量与医学成像领域的模拟技术未来将如何发展

    本文将给出测试测量与医学成像应用领域的实例,并讨论未来的发展趋势
    发表于 05-13 06:34

    光学神经成像研究发展趋势

    光学神经成像研究发展趋势 大脑功能的成像检测在认知神经科学领域具有重要意义。 现代光子学技术的发展为认知脑成像提供了新的研究手段"可在神经
    发表于 02-26 17:06 30次下载

    THz辐射与THz成像技术的研究

    建立了一套透射式逐点扫描太赫兹THz)辐射成像装置,它采用《 100 》-InAs晶体作为高功率、宽频谱的THZ辐射源和高灵敏度、低噪声的电光取样差分探测方法,具有对隐蔽在非透明电介
    发表于 10-23 15:49 8次下载
    <b class='flag-5'>THz</b>辐射与<b class='flag-5'>THz</b><b class='flag-5'>成像</b>技术的研究

    首款国产太赫兹成像芯片发布,将用于安检仪中

    一枚米粒大小的太赫兹芯片,却能在人体安检仪中发挥出巨大功能。记者23日从中国电子科技集团获悉,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。
    发表于 06-01 15:00 2808次阅读

    一文浅谈太赫兹二维成像系统及其成像的方法

    THz(太赫兹成像THz技术的重要应用方向之一,1995年,B.B.Hu和M.C.Nuss利用THz时域光谱系统实现了对新鲜树叶和集成电
    的头像 发表于 12-25 14:02 413次阅读

    虹科分享 | 带您了解太赫兹成像技术及系统方案(上)

    点击蓝字关注我们太赫兹波定义为0.1-10THz范围内的电磁波,处于微波与红外之间,具有许多独特的性质,比如穿透性、非电离辐射、吸水性、指纹频谱等,在材料识别、安全检查与无损检测方面有诸多
    的头像 发表于 09-26 09:58 466次阅读
    虹科分享 | 带您了解太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>技术及系统方案(上)

    虹科分享 | 带您了解太赫兹成像技术及系统方案

    上篇太赫兹波定义为0.1-10THz范围内的电磁波,处于微波与红外之间,具有许多独特的性质,比如穿透性、非电离辐射、吸水性、指纹频谱等,在材料识别、安全检查与无损检测方面有诸多应用。图1太赫兹
    的头像 发表于 09-30 14:57 629次阅读
    虹科分享 | 带您了解太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>技术及系统方案

    高通量太赫兹成像进展与挑战综述

    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹THz成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一
    的头像 发表于 10-07 15:42 567次阅读
    高通量太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>进展与挑战综述