0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩尔定律的经济效益显然已达到终点,产业发展将会受到限制

电子工程师 来源:未知 作者:龚婷 2018-03-17 09:28 次阅读

从时间层面来看,摩尔定律已然失效,然而设计方面仍可透过一些技术可将晶体管尺寸继续缩小、加快处理速度并增加晶体管的数量。只不过摩尔定律的经济效益显然已达到终点,就算厂商有能力继续微缩芯片,若是没有公司负担得起大幅增加的设计前期成本,产业发展同样会受到限制。

根据Sensors Magazine报导,中小型公司若是无力负担设计成本、进行客制芯片的投资,就无法提供客制的核心IP,产品将无法差异化。传统IP提供者都在寻找下一个杀手级应用,希望能有足够的量支持新芯片的开发。

物联网市场为例,Gartner预测,到了2020年底,消费市场将有135亿个物联网装置,其中许多装置将需要智能运算,这些边缘运算装置将导致市场变得分散,难以看出潜在的优胜者。

若公司没有能力透过客制芯片来区隔产品,系统供应商也无法取得胜利。人工智能(AI)正在蓬勃发展,如果半导体产业无法一起行动,将会影响AI的发展。AI需要大量运算,目前可用的芯片无法处理这些工作,若要开发更新、更强大的核心,就需要更容易客制化的芯片。

这是一项巨大的挑战,因为市场由少数公司垄断,加上授权、设计和部署成本贵得惊人,新的设计公司不容易生存。为了让需要的公司和产业得以取得客制的核心IP,芯片的制造和分配方式需要进行根本转变。从经济层面来看,摩尔定律已死,但芯片仍可以继续缩小并加快,但假使没有人负担得起,产品差异化的问题将持续存在。

开放原始码系统单芯片(SoC)设计或许正是半导体产业寻找的解决方案之一。对许多组织机构来说,价格是取得客制核心IP的最大限制。在物联网的推波助澜下,客制化、低功率、高性能与低成本已成设计时的重要考量,开放的RISC-V指令集架构(ISA)成为开发人员的另一种选择,不仅得到学术界支持,也受到Google、NVIDIA、高通(Qualcomm)和Oracle等产业领导者的青睐。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摩尔定律
    +关注

    关注

    4

    文章

    622

    浏览量

    78514
  • 物联网
    +关注

    关注

    2865

    文章

    41498

    浏览量

    357957
  • 晶体管
    +关注

    关注

    76

    文章

    9019

    浏览量

    134967

原文标题:【IC设计】摩尔定律效益渐失 开源指令集降低设计成本

文章出处:【微信号:DIGITIMES,微信公众号:DIGITIMES】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 206次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    摩尔定律的终结:芯片产业的下一个胜者法则是什么?

    在动态的半导体技术领域,围绕摩尔定律的持续讨论经历了显着的演变,其中最突出的是 MonolithIC 3D 首席执行官Zvi Or-Bach于2014 年的主张。
    的头像 发表于 01-25 14:45 512次阅读
    <b class='flag-5'>摩尔定律</b>的终结:芯片<b class='flag-5'>产业</b>的下一个胜者法则是什么?

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 335次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    变频器具有限制电流的功能,为什么电机运行时,还能过载?

    电流,是不是转矩电流也会受到限制? 我们的变频器通常把电机电流限定在额定电流,即100%,电机过载设定为120%,1分钟,这样的话电机电流达到120%的可能性是不是很小,你说的几种能超过过载设定的情况有哪些?能举个例子吗?
    发表于 12-25 07:28

    摩尔定律时代,Chiplet落地进展和重点企业布局

    电子发烧友网报道(文/吴子鹏)几年前,全球半导体产业的重心还是如何延续摩尔定律,在材料和设备端进行了大量的创新。然而,受限于工艺、制程和材料的瓶颈,当前摩尔定律发展出现疲态,
    的头像 发表于 12-21 00:30 1011次阅读

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法
    的头像 发表于 12-05 15:32 318次阅读
    应对传统<b class='flag-5'>摩尔定律</b>微缩挑战需要芯片布线和集成的新方法

    摩尔定律不会死去!这项技术将成为摩尔定律的拐点

    因此,可以看出,为了延续摩尔定律,专家绞尽脑汁想尽各种办法,包括改变半导体材料、改变整体结构、引入新的工艺。但不可否认的是,摩尔定律在近几年逐渐放缓。10nm、7nm、5nm……芯片制程节点越来越先进,芯片物理瓶颈也越来越难克服。
    的头像 发表于 11-03 16:09 275次阅读
    <b class='flag-5'>摩尔定律</b>不会死去!这项技术将成为<b class='flag-5'>摩尔定律</b>的拐点

    超越摩尔定律,下一代芯片如何创新?

    摩尔定律是指集成电路上可容纳的晶体管数目,约每隔18-24个月便会增加一倍,而成本却减半。这个定律描述了信息产业发展速度和方向,但是随着芯片的制造工艺接近物理极限,
    的头像 发表于 11-03 08:28 474次阅读
    超越<b class='flag-5'>摩尔定律</b>,下一代芯片如何创新?

    半导体行业产生深远影响的定律摩尔定律

    有人猜测芯片密度可能会超过摩尔定律的预测。佐治亚理工学院的微系统封装研究指出,2004年每平方厘米约有50个组件,到2020年,组件密度将攀升至每平方厘米约100万个组件。
    的头像 发表于 10-08 15:54 658次阅读

    摩尔定律为什么会消亡?摩尔定律是如何消亡的?

    虽然摩尔定律的消亡是一个日益严重的问题,但每年都会有关键参与者的创新。
    的头像 发表于 08-14 11:03 1313次阅读
    <b class='flag-5'>摩尔定律</b>为什么会消亡?<b class='flag-5'>摩尔定律</b>是如何消亡的?

    什么是摩尔定律?

    摩尔定律是近半个世纪以来,指导半导体行业发展的基石。它不仅是技术进步的预言,更是科技领域中持续创新的见证。要完全理解摩尔定律的影响和意义,首先必须了解它的起源、内容及其对整个信息技术产业
    的头像 发表于 08-05 09:36 3496次阅读
    什么是<b class='flag-5'>摩尔定律</b>?

    【芯闻时译】扩展摩尔定律

    来源:半导体芯科技编译 CEA-Leti和英特尔宣布了一项联合研究项目,旨在开发二维过渡金属硫化合物(2D TMD)在300mm晶圆上的层转移技术,目标是将摩尔定律扩展到2030年以后。 2D
    的头像 发表于 07-18 17:25 276次阅读

    超越摩尔定律:封测行业在集成电路发展中的关键角色

    在过去的几十年中,集成电路(IC)的发展进步近乎神奇,推动着科技领域的诸多创新。其中,摩尔定律在这一发展中起到了重要的推动作用,尤其是在半导体行业。
    的头像 发表于 07-10 10:26 455次阅读
    超越<b class='flag-5'>摩尔定律</b>:封测行业在集成电路<b class='flag-5'>发展</b>中的关键角色

    摩尔定律时代新赛道—硅光子芯片技术

    纵观芯片发展的历史,总是离不开一个人们耳熟能详的概念 ——“摩尔定律”。
    的头像 发表于 06-15 10:23 822次阅读
    后<b class='flag-5'>摩尔定律</b>时代新赛道—硅光子芯片技术

    摩尔定律已过时?谁还能撑起芯片的天下?

    熟悉半导体行业的人想必对摩尔定律很熟悉,摩尔定律自问世以来就是半导体行业的最高目标,正是基于该目标,电子设备变得更加快速、高效且便宜,然而随着集成电路的尺寸越来越小,摩尔定律逐渐难以实现,因此很多人
    的头像 发表于 05-18 11:04 383次阅读