0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于二叉树一些数据结构和算法相关的题目

算法与数据结构 2018-02-07 13:57 次阅读

最近总结了一些数据结构和算法相关的题目,这是第一篇文章,关于二叉树的。先上二叉树的数据结构:

class TreeNode{ int val; //左孩子 TreeNode left; //右孩子 TreeNode right;}

二叉树的题目普遍可以用递归和迭代的方式来解

1. 求二叉树的最大深度

int maxDeath(TreeNode node){ if(node==null){ return 0; } int left = maxDeath(node.left); int right = maxDeath(node.right); return Math.max(left,right) + 1;}

2. 求二叉树的最小深度

int getMinDepth(TreeNode root){ if(root == null){ return 0; } return getMin(root); } int getMin(TreeNode root){ if(root == null){ return Integer.MAX_VALUE; } if(root.left == null&&root.right == null){ return 1; } return Math.min(getMin(root.left),getMin(root.right)) + 1; }

3. 求二叉树中节点的个数

int numOfTreeNode(TreeNode root){ if(root == null){ return 0; } int left = numOfTreeNode(root.left); int right = numOfTreeNode(root.right); return left + right + 1; }

4. 求二叉树中叶子节点的个数

int numsOfNoChildNode(TreeNode root){ if(root == null){ return 0; } if(root.left==null&&root.right==null){ return 1; } return numsOfNodeTreeNode(root.left)+numsOfNodeTreeNode(root.right); }

5. 求二叉树中第k层节点的个数

int numsOfkLevelTreeNode(TreeNode root,int k){ if(root == null||k<1){                return 0;            }            if(k==1){                return 1;            }            int numsLeft = numsOfkLevelTreeNode(root.left,k-1);            int numsRight = numsOfkLevelTreeNode(root.right,k-1);            return numsLeft + numsRight;        }

6. 判断二叉树是否是平衡二叉树

boolean isBalanced(TreeNode node){ return maxDeath2(node)!=-1; } int maxDeath2(TreeNode node){ if(node == null){ return 0; } int left = maxDeath2(node.left); int right = maxDeath2(node.right); if(left==-1||right==-1||Math.abs(left-right)>1){ return -1; } return Math.max(left, right) + 1; }

7.判断二叉树是否是完全二叉树

什么是完全二叉树呢?参见

boolean isCompleteTreeNode(TreeNode root){ if(root == null){ return false; } Queue queue = new LinkedList(); queue.add(root); boolean result = true; boolean hasNoChild = false; while(!queue.isEmpty()){ TreeNode current = queue.remove(); if(hasNoChild){ if(current.left!=null||current.right!=null){ result = false; break; } }else{ if(current.left!=null&¤t.right!=null){ queue.add(current.left); queue.add(current.right); }else if(current.left!=null&¤t.right==null){ queue.add(current.left); hasNoChild = true; }else if(current.left==null&¤t.right!=null){ result = false; break; }else{ hasNoChild = true; } } } return result; }

8. 两个二叉树是否完全相同

boolean isSameTreeNode(TreeNode t1,TreeNode t2){ if(t1==null&&t2==null){ return true; } else if(t1==null||t2==null){ return false; } if(t1.val != t2.val){ return false; } boolean left = isSameTreeNode(t1.left,t2.left); boolean right = isSameTreeNode(t1.right,t2.right); return left&&right; }

9. 两个二叉树是否互为镜像

boolean isMirror(TreeNode t1,TreeNode t2){ if(t1==null&&t2==null){ return true; } if(t1==null||t2==null){ return false; } if(t1.val != t2.val){ return false; } return isMirror(t1.left,t2.right)&&isMirror(t1.right,t2.left); }

10. 翻转二叉树or镜像二叉树

TreeNode mirrorTreeNode(TreeNode root){ if(root == null){ return null; } TreeNode left = mirrorTreeNode(root.left); TreeNode right = mirrorTreeNode(root.right); root.left = right; root.right = left; return root; }

11. 求两个二叉树的最低公共祖先节点

TreeNode getLastCommonParent(TreeNode root,TreeNode t1,TreeNode t2){ if(findNode(root.left,t1)){ if(findNode(root.right,t2)){ return root; }else{ return getLastCommonParent(root.left,t1,t2); } }else{ if(findNode(root.left,t2)){ return root; }else{ return getLastCommonParent(root.right,t1,t2) } } } // 查找节点node是否在当前 二叉树中 boolean findNode(TreeNode root,TreeNode node){ if(root == null || node == null){ return false; } if(root == node){ return true; } boolean found = findNode(root.left,node); if(!found){ found = findNode(root.right,node); } return found; }

12. 二叉树的前序遍历

迭代解法

ArrayList preOrder(TreeNode root){ Stack stack = new Stack(); ArrayList list = new ArrayList(); if(root == null){ return list; } stack.push(root); while(!stack.empty()){ TreeNode node = stack.pop(); list.add(node.val); if(node.right!=null){ stack.push(node.right); } if(node.left != null){ stack.push(node.left); } } return list; }

递归解法

ArrayList preOrderReverse(TreeNode root){ ArrayList result = new ArrayList(); preOrder2(root,result); return result; } void preOrder2(TreeNode root,ArrayList result){ if(root == null){ return; } result.add(root.val); preOrder2(root.left,result); preOrder2(root.right,result); }

13. 二叉树的中序遍历

ArrayList inOrder(TreeNode root){ ArrayList list = new ArrayList<(); Stack stack = new Stack(); TreeNode current = root; while(current != null|| !stack.empty()){ while(current != null){ stack.add(current); current = current.left; } current = stack.peek(); stack.pop(); list.add(current.val); current = current.right; } return list; }

14.二叉树的后序遍历

ArrayList postOrder(TreeNode root){ ArrayList list = new ArrayList(); if(root == null){ return list; } list.addAll(postOrder(root.left)); list.addAll(postOrder(root.right)); list.add(root.val); return list; }

15.前序遍历和后序遍历构造二叉树

TreeNode buildTreeNode(int[] preorder,int[] inorder){ if(preorder.length!=inorder.length){ return null; } return myBuildTree(inorder,0,inorder.length-1,preorder,0,preorder.length-1); } TreeNode myBuildTree(int[] inorder,int instart,int inend,int[] preorder,int prestart,int preend){ if(instart>inend){ return null; } TreeNode root = new TreeNode(preorder[prestart]); int position = findPosition(inorder,instart,inend,preorder[start]); root.left = myBuildTree(inorder,instart,position-1,preorder,prestart+1,prestart+position-instart); root.right = myBuildTree(inorder,position+1,inend,preorder,position-inend+preend+1,preend); return root; } int findPosition(int[] arr,int start,int end,int key){ int i; for(i = start;i<=end;i++){            if(arr[i] == key){                return i;            }        }        return -1;    }

16.在二叉树中插入节点

TreeNode insertNode(TreeNode root,TreeNode node){ if(root == node){ return node; } TreeNode tmp = new TreeNode(); tmp = root; TreeNode last = null; while(tmp!=null){ last = tmp; if(tmp.val>node.val){ tmp = tmp.left; }else{ tmp = tmp.right; } } if(last!=null){ if(last.val>node.val){ last.left = node; }else{ last.right = node; } } return root; }

17.输入一个二叉树和一个整数,打印出二叉树中节点值的和等于输入整数所有的路径

void findPath(TreeNode r,int i){ if(root == null){ return; } Stack stack = new Stack(); int currentSum = 0; findPath(r, i, stack, currentSum); } void findPath(TreeNode r,int i,Stack stack,int currentSum){ currentSum+=r.val; stack.push(r.val); if(r.left==null&&r.right==null){ if(currentSum==i){ for(int path:stack){ System.out.println(path); } } } if(r.left!=null){ findPath(r.left, i, stack, currentSum); } if(r.right!=null){ findPath(r.right, i, stack, currentSum); } stack.pop(); }

18.二叉树的搜索区间

给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点。找到树中所有值在 k1 到 k2 范围内的节点。即打印所有x (k1 <= x <= k2) 其中 x 是二叉查找树的中的节点值。返回所有升序的节点值。

ArrayList result; ArrayList searchRange(TreeNode root,int k1,int k2){ result = new ArrayList(); searchHelper(root,k1,k2); return result; } void searchHelper(TreeNode root,int k1,int k2){ if(root == null){ return; } if(root.val>k1){ searchHelper(root.left,k1,k2); } if(root.val>=k1&&root.val<=k2){            result.add(root.val);        }        if(root.val

19.二叉树的层次遍历

ArrayList> levelOrder(TreeNode root){ ArrayList> result = new ArrayList>(); if(root == null){ return result; } Queue queue = new LinkedList(); queue.offer(root); while(!queue.isEmpty()){ int size = queue.size(); ArrayList< level = new ArrayList(): for(int i = 0;i < size ;i++){                TreeNode node = queue.poll();                level.add(node.val);                if(node.left != null){                    queue.offer(node.left);                }                if(node.right != null){                    queue.offer(node.right);                }            }            result.add(Level);        }        return result;    }

20.二叉树内两个节点的最长距离

二叉树中两个节点的最长距离可能有三种情况:1.左子树的最大深度+右子树的最大深度为二叉树的最长距离2.左子树中的最长距离即为二叉树的最长距离3.右子树种的最长距离即为二叉树的最长距离因此,递归求解即可

private static class Result{ int maxDistance; int maxDepth; public Result() { } public Result(int maxDistance, int maxDepth) { this.maxDistance = maxDistance; this.maxDepth = maxDepth; } } int getMaxDistance(TreeNode root){ return getMaxDistanceResult(root).maxDistance; } Result getMaxDistanceResult(TreeNode root){ if(root == null){ Result empty = new Result(0,-1); return empty; } Result lmd = getMaxDistanceResult(root.left); Result rmd = getMaxDistanceResult(root.right); Result result = new Result(); result.maxDepth = Math.max(lmd.maxDepth,rmd.maxDepth) + 1; result.maxDistance = Math.max(lmd.maxDepth + rmd.maxDepth,Math.max(lmd.maxDistance,rmd.maxDistance)); return result; }

21.不同的二叉树

给出 n,问由 1…n 为节点组成的不同的二叉查找树有多少种?

int numTrees(int n ){ int[] counts = new int[n+2]; counts[0] = 1; counts[1] = 1; for(int i = 2;i<=n;i++){            for(int j = 0;j

22.判断二叉树是否是合法的二叉查找树(BST)

一棵BST定义为:节点的左子树中的值要严格小于该节点的值。节点的右子树中的值要严格大于该节点的值。左右子树也必须是二叉查找树。一个节点的树也是二叉查找树。

public int lastVal = Integer.MAX_VALUE; public boolean firstNode = true; public boolean isValidBST(TreeNode root) { // write your code here if(root==null){ return true; } if(!isValidBST(root.left)){ return false; } if(!firstNode&&lastVal >= root.val){ return false; } firstNode = false; lastVal = root.val; if (!isValidBST(root.right)) { return false; } return true; }

深刻的理解这些题的解法思路,在面试中的二叉树题目就应该没有什么问题

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 二叉树
    +关注

    关注

    0

    文章

    74

    浏览量

    12210

原文标题:一篇文章搞定面试中的二叉树

文章出处:【微信号:TheAlgorithm,微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    二叉树二叉树的性质(1)#数据结构

    数据函数二叉树
    未来加油dz
    发布于 :2023年09月05日 09:06:44

    二叉树二叉树的性质(2)#数据结构

    数据函数二叉树
    未来加油dz
    发布于 :2023年09月05日 09:08:32

    二叉树二叉树的性质(3)#数据结构

    数据函数二叉树
    未来加油dz
    发布于 :2023年09月05日 09:09:51

    平衡二叉树(2)#数据结构

    数据函数二叉树
    未来加油dz
    发布于 :2023年09月05日 09:43:54

    平衡二叉树(3)#数据结构

    数据函数二叉树
    未来加油dz
    发布于 :2023年09月05日 09:45:06

    计算机二叉树的问题

    各位大神,本人马上要考计算机级了,那个二叉树老是弄不明白,比如题目二叉树共有25个节
    发表于 09-04 09:45

    二叉树删除算法

    二叉树的删除操作主要是寻找替代点来进行替换操作。方法:先右转,再直左转,直到左连接为空的那个点。然后,摘取出来,完成链接指向操作。public void deletmin(void){ root
    发表于 12-30 20:55

    二叉查找(GIF动图讲解)

    ,则右子树上所有结点的值均大于它的根结点的值;·任意节点的左、右子树也分别为二叉查找;·没有键值相等的节点。二叉查找相比于其他数据结构
    发表于 07-29 15:24

    收藏 | 程序员面试,你必须知道的8大数据结构

    面试题会明确提及某种数据结构,例如,“给定二叉树。”而另一些则隐含在面试题中,例如,“我们希望记录每个作者相关的书籍数量。”即便是对于
    发表于 09-30 09:35

    什么是“红黑”看了就知道

    今天我们要说的红黑就是就是棵非严格均衡的二叉树,均衡二叉树又是在二叉搜索的基础上增加了自动
    发表于 10-27 17:00

    Java编程求二叉树的镜像两种方法介绍

    给出二叉树,求它的镜像,如下图:右边是二叉树是左边二叉树的镜像。仔细分析这两棵的特点,看看能不能总结出求镜像的步骤。这两棵
    发表于 12-16 16:25

    嵌入式基本数据结构相关资料分享

    F和Q分别指向单链表两个元素的指针,那么F所指元素是Q所指元素的后继条件是?4.入栈和出栈操作最后的序列,二叉树的中序,前序,后序遍历5.哪些事件会导致进程的创建:用户登录,作业调度,提供服务,应用请求6.现代计算机按存储结构方式可划分为复杂指令集计算机和精简指令集计算机
    发表于 12-22 06:48

    MySQL数据库索引的底层是怎么实现的

    二叉树,B,B+这4种数据结构,以及为啥选用B+作为mysql数据库的
    发表于 07-28 15:30

    数据结构算法分析中的二叉树与堆有关知识汇总

    该资料包括数据结构算法分析中的二叉树与堆有关的一些知识
    发表于 11-03 09:37 0次下载

    C语言数据结构:什么是二叉树

    完全二叉树:完全二叉树是效率很高的数据结构。对于深度为K,有n个节点的二叉树,当且仅当每一个节点都与深度为K的满二叉树中编号从1至n的节点一
    的头像 发表于 04-21 16:20 1650次阅读