0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用RTC实时时钟进行应用场景开发

UtFs_Zlgmcu7890 来源:互联网 作者:佚名 2018-01-25 09:15 次阅读

周立功教授新书《面向AMetal框架与接口编程(上)》,对AMetal框架进行了详细介绍,通过阅读这本书,你可以学到高度复用的软件设计原则和面向接口编程的开发思想,聚焦自己的“核心域”,改变自己的编程思维,实现企业和个人的共同进步。

第六章为重用外设驱动代码,本文内容包含6.3 RTC 实时时钟中的后两个小节:

6.3.6 RX8025T

6.3.7 DS1302

6.3 RTC 实时时钟

>>> 6.3.6 RX8025T

在MicroPort 系列扩展模块中,除主芯片为PCF85063 的RTC 模块外,还有RX8025T模块和DS1302 模块,它们都是RTC 扩展模块,其主要区别详见表6.14。

表6.14 RTC 芯片对比

表中,“√”表示对应器件支持该功能,“×”表示对应器件不支持该功能。

1. 器件简介

RX8025T 是一款内置高稳定度的32.768KHz 的 DTCXO(数字温度补偿晶体振荡器)的I2C总线接口方式的实时时钟芯片,它提供了时间日期的设置与获取、闹钟中断、时间更新中断、固定周期中断、温度补偿等功能。所有地址和数据通过I2C总线来传输,最大总线速率可达到400kbps。

RX8025T 引脚封装详见图6.6,其中的SCL 和SDA 为I2C接口引脚,VDD 和VSS 分别为电源和地;CLKOUT 为时钟输出引脚,可用于输出时钟信号;T1(CE)、TEST、T2(Vpp)引脚仅供厂家测试使用,NC 为无需连接的引脚,实际使用时,这些引脚直接悬空即可;INT 为中断引脚,主要用于闹钟等功能;CLK_EN 为时钟输出使能引脚, 用于控制CLKOUT 时钟的输出。

图6.6 RX8025T 引脚定义

RX8025T 的7 位I2C从机地址为0x32,模块原理图详见图6.7。若将MicroPort-RX8025T模块通过MicroPort 接口与AM824-Core 相连,则SCL 和SDA 分别与PIO0_16 和PIO0_18连接,INT 引脚与PIO0_1 连接,FOE 与PIO0_10 连接。

图6.7 RX8025T 模块电路

2. 器件初始化

在使用RX8025T 前,必须完成RX8025T 的初始化操作,以获取对应的操作句柄,进而才能使用RX8025T 的各种功能,初始化函数(am_rx8025t.h)的原型为:

该函数意在获取RX8025T 器件的实例句柄,其中,p_dev 为指向am_rx8025t_dev_t 类型实例的指针,p_devinfo 为指向am_rx8025t_devinfo_t 类型的实例信息的指针。

(1)实例

定义am_rx8025t_dev_t 类型(am_rx8025t.h)实例如下:

其中,g_rx8025t_dev 为用户自定义的实例,其地址作为p_dev 的实参传递。

(2)实例信息

实例信息主要描述了具体器件的固有信息,即RX8025T 的CLK_EN、INT 引脚与微处理器引脚的连接信息。其类型am_rx8025t_devinfo_t 的定义(am_rx8025t.h)如下:

当MicroPort-RX8025T 模块通过MicroPort 接口与AM824-Core 相连时, INT和CLK_EN和分别与PIO0_1 和PIO0_10 连接。其实例信息定义如下:

其中,g_rx8025t_devinfo 为用户自定义的实例信息,其地址作为p_devinfo 的实参传递。

(3)I2C句柄i2c_handle

I2C1 为例,其实例初始化函数am_lpc82x_i2c1_inst_init ()的返回值将作为实参传递给i2c_handle。即:

(4)实例句柄

RX8025T 初始化函数am_rx8025t_init ()的返回值,作为实参传递给其它功能接口函数的第一个参数(handle)。am_rx8025t_handle_t 类型的定义(am_rx8025t.h)如下:

若返回值为NULL,说明初始化失败;若返回值不为NULL,说明返回值handle 有效。

基于模块化编程思想,将初始化相关的实例、实例信息等的定义存放到对应的配置文件中,通过头文件引出实例初始化函数接口,源文件和头文件的程序范例分别详见程序清单6.39 和程序清单6.40。

程序清单6.71 实例初始化函数实现(am_hwconf_rx8025t.c)

程序清单6.72 实例初始化函数声明(am_hwconf_rx8025t.h)

后续只需要使用无参数的实例初始化函数,即可获取到RX8025T 的实例句柄。即:

3. 使用RTC 功能

使用RTC 功能即使用RTC 通用接口操作RX8025T 进行时间的设置和获取,在使用RTC通用接口前,需要获取一个am_rtc_handle_t 类型的RTC 句柄。RX8025T 的驱动提供了相应的接口用于获取RX8025T 的RTC 句柄,以便用户通过RTC 通用接口操作RX8025T,其函数原型为:

该函数意在获取RTC 句柄,其中,RX8025T 实例的句柄(rx8025t_handle)作为实参传递给handle,p_rtc 为指向am_rtc_serv_t 类型实例的指针,无实例信息。定义am_rtc_serv_t类型(am_rtc.h)实例如下

其中,g_rx8025t_rtc 为用户自定义的实例,其地址作为p_rtc 的实参传递。

基于模块化编程思想,将初始化相关的实例定义存放到对应的配置文件中,通过头文件引出实例初始化函数接口,源文件和头文件分别详见程序清单6.73 和程序清单6.74。

程序清单6.73 新增RX8025T 的RTC 实例初始化函数(am_hwconf_rx8025t.c)

程序清单6.74 am_hwconf_rx8025t.h 文件内容更新(1)

后续只需要使用无参数的RTC 实例初始化函数,即可获取RTC 实例句柄。即:

获取到handle 后,由于基于RTC 通用接口编写的应用程序是可以跨平台复用的,因此可以直接基于RX8025T 启动如程序清单6.45 所示的RTC 时间显示应用程序,详见程序清单6.75。

程序清单6.75 启动RTC 应用程序(基于RX8025T)

显然,若将RTC 模块由PCF85063 更换为RX8025T,应用程序核心代码无需修改。

4. 使用闹钟功能

使用闹钟功能即使用闹钟通用接口操作RX8025T。在使用闹钟通用接口前,需要获取到一个am_alarm_clk_handle_t 类型的闹钟句柄。RX8025T 的驱动提供了相应的接口用于获取RX8025T 的闹钟句柄,便于用户通过闹钟通用接口操作RX8025T,其函数原型为:

该函数意在获取闹钟句柄,其中,RX8025T 实例的句柄(rx8025t_handle)作为实参传递给handle,p_alarm_clk 为指向am_alarm_clk_serv_t 类型实例的指针,无实例信息。定义am_alarm_clk_serv_t 类型(am_alarm_clk.h)实例如下:

其中,g_rx8025t_alarm_clk 为用户自定义的实例,其地址作为p_alarm_clk 的实参传递。

基于模块化编程思想,将初始化相关的实例定义存放到对应的配置文件中,通过头文件引出实例初始化函数接口,源文件和头文件分别详见程序清单6.76 和程序清单6.77。

程序清单6.76 新增RX8025T 的闹钟实例初始化函数(am_hwconf_rx8025t.c)

程序清单6.77 am_hwconf_rx8025t.h 文件内容更新(2)

后续只需要使用无参数的闹钟实例初始化函数,即可获取闹钟实例句柄。即:

获取到handle 后,由于基于闹钟通用接口编写的应用程序是可以跨平台复用的,因此可以直接基于RX8025T 启动如程序清单6.54 所示的闹钟测试应用程序,详见程序清单6.78。

程序清单6.78 启动闹钟测试应用程序(基于RX8025T)

显然,若将RTC 模块由PCF85063 更换为RX8025T,闹钟应用程序核心代码无需修改。

5. 为系统时间提供RTC 服务

若需要使用RX8025T 为系统时间提供RTC 服务,只需要在初始化系统时间时,将从RX8025T 中获取的RTC 句柄作为系统时间初始化函数的rtc_handle 参数。即:

为方便使用,将初始化函数的调用添加到配置文件中,通过头文件引出系统时间的实例初始化函数接口,详见程序清单6.79 和程序清单6.80。

程序清单6.79 RX8025T 用作系统时间的实例初始化(am_hwconf_rx8025t.c)

程序清单6.80 am_hwconf_rx8025t.h 文件内容更新(3)

后续只需要简单的调用该无参函数,即可完成系统时间的初始化。即:

系统时间初始化后,由于基于系统时间通用接口编写的应用程序是可以跨平台复用的,因此可以直接基于RX8025T 启动如程序清单6.65 所示的系统时间测试应用程序,详见程序清单6.81。

程序清单6.81 启动系统时间测试应用程序(基于RX8025T)

显然,若将RTC 模块由PCF85063 更换为RX8025T,使用系统时间的应用程序无需修改。

6. 特殊功能控制接口

对于RX8025T,除典型的时钟和闹钟功能外,还具有一些特殊功能,比如,定时器、时钟输出、1 字节RAM 等。这些功能由于不是通用功能,只能使用RX8025T 相应的接口进行操作。以读写1 字节RAM 为例,其相应的接口函数详见表6.15。

表6.15 读写RAM 接口函数(am_rx8025t.h)

(1)写入RAM

该函数用于写入1 字节数据到RX8025T 的RAM 中,其函数原型为:

其中,handle 为RX8025T 实例句柄,data 为写入的单字节数据。若返回AM_OK,表示数据写入成功,反之失败,写入0x55 至RAM 中的范例程序详见程序清单6.82。

程序清单6.82 写入RAM 范例程序

(2)读取RAM

该函数用于读取存于RX8025T 的单字节RAM 中的数据,其函数原型为:

其中,handle 为RX8025T 实例句柄,p_data 为输出参数,用于返回读取的单字节数据。

返回AM_OK,表示读取成功,反之失败,范例程序详见程序清单6.83。

程序清单6.83 读取RAM 范例程序

可以使用读写RAM 接口简单验证RX8025T 是否正常,详见程序清单6.84。

程序清单6.84 读写RAM 数据范例程序

若读写数据出错,则点亮LED0。由此可见,虽然该程序的逻辑与程序清单6.70 所示的应用程序基本一致,但由于使用的接口是特殊功能控制接口,与具体芯片相关,因此并不能直接像RTC 应用程序和闹钟应用程序那样直接跨平台复用。

>>> 6.3.7 DS1302

1. 器件简介

DS1302 是一款涓流充电计时芯片,它包含一个实时时钟和31 字节的静态 RAM,能够提供年、月、日、时、分、秒等信息,具有闰年校正功能。

DS1302 被设计工作在非常低的电能下,在低于1μW 时还能保持数据和时钟信息。除了基本计时功能以外,DS1302 还具有其它一些特点,比如,双管脚主电源和备用电源,可编程涓流充电器VCC1。

DS1302 通过简单的串行接口与微处理器通讯,使用同步串行通讯简化了 DS1302 与微处理器的接口,通讯只需要三根线:CE、I/O(数据线)、SCLK(串行时钟)。DS1302 的引脚封装图详见图6.8。

图6.8 DS1302 引脚定义

其中,X1 和X2 为外接晶振的引脚,需要连接标准的32.768kHz 的石英晶体。SCLK、CE、I/O 为与微处理器的串行通信引脚。GND 为电源地,VCC1 和VCC2为电源引脚,这也是DS1302 具有特色的地方,即:双管脚主电源和备用电源,在双管脚中,VCC2 是主电源,VCC1 是备用电源,一般接充电电池。DS1302 是由VCC1 或VCC2 两者中的较大者供电。当VCC2 大于VCC1+0.2V,VCC2 给芯片供电。当VCC2 小于VCC1 时,芯片由VCC1 供电。当芯片由VCC2 供电时,VCC1 不供电,同时,还可以通过可编程涓流充电器,使VCC2 向VCC1 流入很小的电流,以便为连接到VCC1 的电池充电。当然,VCC1可以不接可充电电池,此时,只需要通过控制可编程涓流充电器,使VCC2 不向VCC1 流入电流即可。

DS1032 模块的原理图详见图6.9,若将MicroPort-DS1302 模块通过MicroPort 接口AM824-Core 相连,则SCLK、I/O 和CE 分别与PIO0_15、PIO0_13 和PIO0_14 连接。

图6.9 DS1302 模块电路

2. 器件初始化

在使用DS1302 前,必须完成DS1302 的初始化操作,以获取对应的操作句柄,进而才能使用DS1302 的各种功能,初始化函数的原型(am_ds1302.h)为:

该函数意在获取DS1302 器件的实例句柄,其中,p_dev 为指向am_ds1302_gpio_dev_t类型实例的指针,p_devinfo 为指向am_ds1302_gpio_devinfo_t 类型的实例信息的指针。

(1)实例

定义am_ds1302_gpio_dev_t 类型(am_ds1302.h)实例如下:

其中,g_ds1302_gpio_dev 为用户自定义的实例,其地址作为p_dev 的实参传递。

(2)实例信息

实例信息主要描述了具体器件的固有信息,即DS1302 的SCLK、I/O、CE 引脚与微处理器引脚的连接信息。其类型am_ds1302_gpio_devinfo_t 的定义(am_ds1302.h)如下:

当MicroPort-DS1302 模块通过MicroPort 接口与AM824-Core 相连时, SCLK、I/O 和CE 分别与PIO0_15、PIO0_13 和PIO0_14 连接。其实例信息定义如下:

其中,g_ds1302_gpio_devinfo 为用户自定义的实例信息,其地址作为p_devinfo 的实参传递。

(3)实例句柄

DS1302 的初始化函数am_ds1302_gpio_init()的返回值,作为实参传递给其它功能接口函数的第一个参数(handle)。am_ds1302_handle_t 类型的定义(am_ds1302.h)如下:

若返回值为NULL,说明初始化失败;若返回值不为NULL,说明返回值handle 有效。

基于模块化编程思想,将初始化相关的实例、实例信息等的定义存放到对应的配置文件中,通过头文件引出实例初始化函数接口,源文件和头文件的程序范例分别详见程序清单6.85 和程序清单6.86。

程序清单6.85 实例初始化函数实现(am_hwconf_ds1302.c)

程序清单6.86 实例初始化函数声明(am_hwconf_ds1302.h)

后续只需要使用无参数的实例初始化函数,即可获取到DS1302 的实例句柄。即:

3. 使用RTC 功能

使用RTC 功能即可使用RTC 通用接口操作DS1302 设置和获取时间,在使用RTC 通用接口前,需要获取一个am_rtc_handle_t 类型的RTC 句柄。DS1302 的驱动提供了相应的接口用于获取DS1302 的RTC 句柄,便于用户通过RTC 通用接口操作DS1302,其函数原型为:

该函数意在获取RTC 句柄,其中,DS1302 实例的句柄(ds1302_handle)作为实参传递给handle,p_rtc 为指向am_rtc_serv_t 类型实例的指针,无实例信息。定义am_rtc_serv_t 类型(am_rtc.h)实例如下:

其中,g_ds1302_rtc 为用户自定义的实例,其地址作为p_rtc 的实参传递。

基于模块化编程思想,将初始化相关的实例定义存放到对应的配置文件中,通过头文件引出实例初始化函数接口,源文件和头文件分别详见程序清单6.87 和程序清单6.88。

程序清单6.87 新增DS1302 的RTC 实例初始化函数(am_hwconf_ds1302.c)

程序清单6.88 am_hwconf_ds1302.h 文件内容更新(1)

后续只需要使用无参数的RTC 实例初始化函数,即可获取RTC 实例句柄。即:

获取handle 后,由于基于RTC 通用接口编写的应用程序是可以跨平台复用的,因此可以直接基于DS1302 启动如程序清单6.45 所示的RTC 时间显示应用程序。

程序清单6.89 启动RTC 应用程序(基于DS1302)

由此可见,若将RTC 模块由PCF85063 更换为DS1302,则应用程序核心代码无需修改。

4. 为系统时间提供RTC 服务

由于DS1302 不支持闹钟功能,因此不能使用通用闹钟接口操作DS1302。若需要使用DS1302 为系统时间提供RTC 服务,只需要在初始化系统时间时,将从 DS1302 中获取的RTC 句柄作为系统时间初始化函数的rtc_handle 参数。即:

为方便使用特将初始化函数的调用添加到配置文件中,通过头文件引出系统时间的实例初始化函数接口,详见程序清单6.90 和程序清单6.91。

程序清单6.90 DS1302 用作系统时间的实例初始化(am_hwconf_ds1302.c)

程序清单6.91 am_hwconf_ds1302.h 文件内容更新(2)

后续只需要简单的调用该无参函数,即可完成系统时间的初始化。即:

系统时间初始化后,由于基于系统时间通用接口编写的应用程序是可重用的,因此可以直接基于DS1302 启动如程序清单6.65 所示的系统时间测试应用程序,详见程序清单6.92。

程序清单6.92 启动系统时间测试应用程序(基于DS1302)

显然,若将RTC 模块由PCF85063 更换为DS1302,使用系统时间的应用程序无需修改。

5. 特殊功能控制接口

除典型的实时时钟功能外,DS1302 还具有一些特殊功能,比如,涓流充电功能、31 字节RAM 等。这些功能由于不是通用功能,只能使用DS1302 相应的接口操作。以读写RAM和涓流充电功能为例,其相应的接口函数详见表6.16。

表6.16 DS1302 特殊功能控制接口(am_ds1302.h)

(1)写入RAM

该函数用于写入数据到DS1302 的RAM 中(最多可写入31 字节数据),其函数原型为:

其中,handle 为DS1302 实例句柄,p_data 指向待写入数据的首地址,data_len 指定写入数据的字节数,最大为31 字节,pos 指定了写入RAM 的起始地址,DS1302 的RAM 空间大小为31 字节,对应的地址为0 ~ 30,pos 的有效范围即为0 ~ 30。若返回AM_OK,表示数据写入成功,反之失败,写入31 字节数据至RAM 中的范例程序详见程序清单6.93。

程序清单6.93 写入RAM 范例程序

(2)读取RAM

该函数用于读取存于DS1302 的 RAM 中的数据,其函数原型为:

其中,handle 为DS1302 实例句柄,p_data 为输出参数,用于返回读取的数据,data_len表示读取数据的字节数,pos 表示读取数据的起始地址(0 ~ 30)。若返回AM_OK,表示读取成功,反之失败,范例程序详见程序清单6.94。

程序清单6.94 读取RAM 范例程序

可以使用读写RAM 接口简单验证DS1302 是否正常,详见程序清单6.95。

程序清单6.95 读写RAM 数据范例程序

(3)使能涓流充电

DS1302 具有双电源供电,当芯片由VCC2 供电时,可以通过可编程涓流充电器,使VCC2向VCC1 流入很小的电流,以便为连接到VCC1 的电池充电。使能涓流充电的函数原型为:

其中,handle 为DS1302 实例句柄,set_val 为可编程涓流充电器的控制参数,可以控制充电的电流。充电电路的示意图详见图6.10。

图6.10 DS1302 充电电路示意图

当总开关打开后,充电电流的大小是由选择的二极管个数(1 个或2 个)和电阻阻值(2KΩ、4KΩ 或8KΩ)决定的。二极管的个数决定了电压的压降,电流的计算公式为:

set_val 可用的值已经使用宏进行了定义,详见表6.17实际使用时,应该根据需要的电流大小选择其中一个宏作为set_val 的值。

表6.17 充电电路设置标志

比如,若选择1 个二极管、2K电阻,则应该将set_val 的值设置为:

AM_DS1302_TRICKLE_1D_2K

由于在MicroPort-DS1302 中,VCC2 的值为3.3V,因此此时的实际电流计算公式为:

当VCC1 为0 时(电池电量完全耗尽)时,则电流达到最大值,其值为:

这就要求电池支持的最大充电电流为1.3mA。实际中,随着对电池的充电,电池电量增加,VCC1 会逐渐增加,充电电流也随之逐渐减小。范例程序详见程序清单6.96。

程序清单6.96 使能涓流充电范例程序

(3)禁能涓流充电

当不需要充电时,如使用的非充电电池,可以使用该接口禁能涓流充电,其函数原型为:

其中,handle 为DS1302 实例句柄,范例程序详见程序清单6.97。

程序清单6.97 禁能涓流充电范例程序

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • DS1302
    +关注

    关注

    8

    文章

    448

    浏览量

    50224
  • RTC
    RTC
    +关注

    关注

    2

    文章

    484

    浏览量

    65436
  • 周立功
    +关注

    关注

    38

    文章

    130

    浏览量

    37076

原文标题:周立功:重用外设驱动代码—— RTC 实时时钟(2)

文章出处:【微信号:Zlgmcu7890,微信公众号:周立功单片机】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CW32实时时钟RTC)介绍

    CW32实时时钟RTC)介绍
    的头像 发表于 10-24 15:36 513次阅读
    CW32<b class='flag-5'>实时时钟</b>(<b class='flag-5'>RTC</b>)介绍

    基于FPGA的RTC实时时钟系统设计

    RTC(real time clock)实时时钟,在电脑、手机等电子产品中都有,应用较多。它的主要作用就是,在产品断电之后,时间还可以继续走数。这样我们在重新使用电子产品时,时间仍然正确。芯片本身可以通过纽扣电池供电,接下来我们一起学习一下
    的头像 发表于 08-23 09:29 599次阅读
    基于FPGA的<b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>系统设计

    STM32 RTC实时时钟(二)

    上次实验完成了对实时时钟的基本功能——计时的实验,这次在计时的基础上对RTC的可编程闹钟的功能进行测试。
    的头像 发表于 07-22 15:43 1134次阅读
    STM32 <b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>(二)

    STM32 RTC实时时钟(一)

    STM32处理器内部集成了实时时钟控制器(RTC),因此在实现实时时钟功能时,无须外扩时钟芯片即可构建实时时钟系统。
    的头像 发表于 07-22 15:41 2842次阅读
    STM32 <b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>(一)

    DA1468x SoC 的实时时钟(RTC) 概念

    DA1468x SoC 的实时时钟 (RTC) 概念
    发表于 07-06 19:27 0次下载
    DA1468x SoC 的<b class='flag-5'>实时时钟</b>(<b class='flag-5'>RTC</b>) 概念

    为什么我们需要一个单独的RTCRTC实时时钟的特点和应用

    你知道RTC实时时钟)吗?即使你不知道它长什么样,它也可以说是安装在我们身边所有电子产品中的一种设备,它的主要目的是“报时”。告诉这个时间不仅仅意味着“现在几点了?”例如,根据RTC被勾选的时间获取位置信息。或者你可以在固定的
    的头像 发表于 07-06 18:22 3708次阅读

    CW32实时时钟RTC)介绍(下)

    实时时钟RTC)是一个专用的计数器 / 定时器,可提供日历信息,包括小时、分钟、秒、日、月份、年份以及星期。RTC 具有两个独立闹钟,时间、日期可组合设定,可产生闹钟中断,并通过引脚输出;支持时间
    的头像 发表于 05-26 17:07 664次阅读
    CW32<b class='flag-5'>实时时钟</b>(<b class='flag-5'>RTC</b>)介绍(下)

    CW32实时时钟RTC)介绍(上)

    实时时钟RTC)是一个专用的计数器 / 定时器,可提供日历信息,包括小时、分钟、秒、日、月份、年份以及星期。RTC 具有两个独立闹钟,时间、日期可组合设定,可产生闹钟中断,并通过引脚输出;支持时间
    的头像 发表于 05-26 17:07 1167次阅读
    CW32<b class='flag-5'>实时时钟</b>(<b class='flag-5'>RTC</b>)介绍(上)

    深入浅出了解Linux RTC实时时钟

    实时时钟是个常用的外设,可以用来获取年、月、日和时间等信息。目前大多数的芯片内部都自带了实时时钟外设模块。例如本实验所使用的I.MX6ULL芯片内部SNVS就提供了RTC实时计数器)
    的头像 发表于 05-26 15:06 729次阅读
    深入浅出了解Linux <b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>

    RTC时钟与触摸功能详解(下)

    RTC(Real Time Clock)实时时钟,主要用于为人们提供精确的实时时间或者为系统提供精确的时间基准。RTC通常分为两类,一类是外部时钟
    的头像 发表于 05-26 14:45 912次阅读
    <b class='flag-5'>RTC</b><b class='flag-5'>时钟</b>与触摸功能详解(下)

    RTC时钟与触摸功能详解(上)

    RTC(Real Time Clock)实时时钟,主要用于为人们提供精确的实时时间或者为系统提供精确的时间基准。RTC通常分为两类,一类是外部时钟
    的头像 发表于 05-26 14:44 1349次阅读
    <b class='flag-5'>RTC</b><b class='flag-5'>时钟</b>与触摸功能详解(上)

    STM32学习笔记之RTC实时时钟2

    STM32 的实时时钟RTC)是一个独立的定时器。 STM32 的 RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的
    的头像 发表于 05-26 14:26 841次阅读
    STM32学习笔记之<b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>2

    STM32学习笔记之RTC实时时钟1

    STM32 的实时时钟RTC)是一个独立的定时器。 STM32 的 RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的
    的头像 发表于 05-26 14:26 1286次阅读
    STM32学习笔记之<b class='flag-5'>RTC</b><b class='flag-5'>实时时钟</b>1

    实时时钟RTC:32.768kHz晶振

    实时时钟(RTC: Real-Time Clock)是集成电路,通常称为时钟芯片。目前实时时钟芯片大多采用精度较高的晶体振荡器作为时钟源。
    的头像 发表于 05-08 10:45 1856次阅读
    <b class='flag-5'>实时时钟</b><b class='flag-5'>RTC</b>:32.768kHz晶振

    基于STM32单片机RTC实时时钟使用库文件设计

    基于STM32单片机RTC实时时钟使用库文件设计源代码
    发表于 04-26 14:28 2次下载