0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

软开关LLC谐振电路特点与LLC谐振转换器工作原理解析

电源研发精英圈 来源:未知 作者:佚名 2018-01-24 07:30 次阅读


【LLC众筹】60小时视频教程:从实践上设计出属于自己的半桥LLC谐振开关电源


1.摘要

近来, LLC拓扑以其高效,高功率密度受到广大电源设计工程师的青睐,但是这种软开关拓扑对MOSFET的要求却超过了以往任何一种硬开关拓扑。特别是在电源启机,动态负载,过载,短路等情况下。CoolMOS 以其快恢复体二极管,低Qg 和Coss能够完全满足这些需求并大大提升电源系统的可靠性。

长期以来, 提升电源系统功率密度,效率以及系统的可靠性一直是研发人员面临的重大课题。 提升电源的开关频率是其中的方法之一, 但是频率的提升会影响到功率器件的开关损耗,使得提升频率对硬开关拓扑来说效果并不十分明显,硬开关拓扑已经达到了它的设计瓶颈。而此时,软开关拓扑,如LLC拓扑以其独具的特点受到广大设计工程师的追捧。但是… 这种拓扑却对功率器件提出了新的要求。

2. LLC 电路的特点

LLC 拓扑的以下特点使其广泛的应用于各种开关电源之中:

1. LLC 转换器可以在宽负载范围内实现零电压开关。

2. 能够在输入电压和负载大范围变化的情况下调节输出,同时开关频率变化相对很小。

3. 采用频率控制,上下管的占空比都为50%.

4. 减小次级同步整流MOSFET的电压应力,可以采用更低的电压MOSFET从而减少成本。

5. 无需输出电感,可以进一步降低系统成本。

6. 采用更低电压的同步整流MOSFET, 可以进一步提升效率。

3. LLC 电路的基本结构以及工作原理

图1和图2分别给出了LLC谐振变换器的典型线路和工作波形。如图1所示LLC转换器包括两个功率MOSFET(Q1和Q2),其占空比都为0.5;谐振电容Cr,副边匝数相等的中心抽头变压器Tr,等效电感Lr,励磁电感Lm,全波整流二极管D1和D2以及输出电容Co。

图1 LLC谐振变换器的典型线路

图2 LLC谐振变换器的工作波形

而LLC有两个谐振频率,Cr, Lr 决定谐振频率fr1; 而Lm, Lr, Cr决定谐振频率fr2。

系统的负载变化时会造成系统工作频率的变化,当负载增加时, MOSFET开关频率减小, 当负载减小时,开关频率增大。

3.1 LLC谐振变换器的工作时序

LLC变换器的稳态工作原理如下。

1)〔t1,t2〕

Q1关断,Q2开通,电感Lr和Cr进行谐振,次级D1关断,D2开通,二极管D1约为两倍输出电压,此时能量从Cr, Lr转换至次级。直到Q2关断。

2)〔t2,t3〕

Q1和Q2同时关断,此时处于死区时间, 此时电感Lr, Lm电流给Q2的输出电容充电,给Q1的输出电容放电直到Q2输出电容的电压等于Vin.

次级D1和D2关断 Vd1=Vd2=0, 当Q1开通时该相位结束。

3)〔t3,t4〕

Q1导通,Q2关断。D1导通, D2关断, 此时Vd2=2Vout

Cr和Lr谐振在fr1, 此时Ls的电流通过Q1返回到Vin,直到Lr的电流为零次相位结束。

4)〔t4,t5〕

Q1导通, Q2关断, D1导通, D2关断,Vd2=2Vout

Cr和Lr谐振在fr1, Lr的电流反向通过Q1流回功率地。 能量从输入转换到次级,直到Q1关断该相位结束

5)〔t5,t6)

Q1,Q2同时关断, D1,D2关断, 原边电流I(Lr+Lm)给Q1的Coss充电, 给Coss2放电, 直到Q2的Coss电压为零。 此时Q2二极管开始导通。 Q2开通时相位结束。

6)〔t6,t7〕

Q1关断,Q2导通,D1关断, D2 开通,Cr和Ls谐振在频率fr1, Lr 电流经Q2回到地。 当Lr电流为零时相位结束。

3.2 LLC谐振转换器异常状态分析

以上描述都是LLC工作在谐振模式, 接下来我们分析LLC转换器在启机, 短路, 动态负载下的工作情况。

3.21 启机状态分析

通过LLC 仿真我们得到如图3所示的波形,在启机第一个开关周期,上下管会同时出现一个短暂的峰值电流Ids1 和Ids2. 由于MOSFET Q1开通时会给下管Q2的输出电容Coss充电,当Vds为高电平时充电结束。而峰值电流Ids1和Ids2也正是由于Vin通过MOSFET Q1 给Q2 结电容Coss的充电而产生。

图3 LLC 仿真波形

我们将焦点放在第二个开关周期时如图4,我们发现此时也会出现跟第一个开关周期类似的尖峰电流,而且峰值会更高,同时MOSFET Q2 Vds也出现一个很高的dv/dt峰值电压。那么这个峰值电流的是否仍然是Coss引起的呢? 我们来做进一步的研究。

图4 第二个开关周期波形图

对MOSFET结构有一定了解的工程师都知道,MOSFET不同于IGBT,在MOSFET内部其实寄生有一个体二极管,跟普通二极管一样在截止过程中都需要中和载流子才能反向恢复, 而只有二极管两端加上反向电压才能够使这个反向恢复快速完成, 而反向恢复所需的能量跟二极管的电荷量Qrr相关, 而体二极管的反向恢复同样需要在体二极管两端加上一个反向电压。在启机时加在二极管两端的电压Vd=Id2 x Ron. 而Id2在启机时几乎为零,而二极管在Vd较低时需要很长的时间来进行反向恢复。如果死区时间设置不够,如图5所示高的dv/dt会直接触发MOSFET内的BJT从而击穿MOSFET.

图5

通过实际的测试,我们可以重复到类似的波形,第二个开关周期产生远比第一个开关周期高的峰值电流,同时当MOSFET在启机的时dv/dt高118.4V/ns. 而Vds电压更是超出了600V的最大值。MOSFET在启机时存在风险。

图6

3.22 异常状态分析

下面我们继续分析在负载剧烈变化时,对LLC拓扑来说存在那些潜在的风险。

在负载剧烈变化时,如短路,动态负载等状态时,LLC电路的关键器件MOSFET同样也面临着挑战。

通常负载变化时LLC 都会经历以下3个状态。我们称之为硬关断, 而右图中我们可以比较在这3个时序当中,传统MOSFET和CoolMOS内部载流子变化的不同, 以及对MOSFET带来的风险。

时序1, Q2零电压开通,反向电流经过MOSFET和体二极管, 此时次级二极管D2开通,D1关段。

-传统MOSFET此时电子电流经沟道区,从而减少空穴数量

-CoolMOS此时同传统MOSFET一样电子电流经沟道,穴减少,不同的是此时CoolMOS 的P井结构开始建立。

时序2, Q1和Q2同时关断,反向电流经过MOSFETQ2体二极管。

Q1和Q2关断时对于传统MOSFET和CoolMOS来说内部电子和空穴路径和流向并没有太大的区别。

时序3, Q1此时开始导通,由于负载的变化, 此时MOSFET Q2的体二极管需要很长的时间来反向恢复。当二极管反向恢复没有完成时MOSFET Q2出现硬关断, 此时Q1开通,加在Q2体二极管上的电压会在二极管形成一个大电流从而触发MOSFET内部的BJT造成雪崩。

-传统MOSFET此时载流子抽出,此时电子聚集在PN节周围, 空穴电流拥堵在PN节边缘。

-CoolMOS的电子电流和空穴电流各行其道, 此时空穴电流在已建立好的P井结构中流动,并无电子拥堵现象。

综上, 当LLC电路出现过载,短路,动态负载等条件下, 一旦二极管在死区时间不能及时反向恢复, 产生的巨大的复合电流会触发MOSFET内部的BJT使MOSFET失效。

有的 CoolMOS采用Super Juction结构, 这种结构在MOSFET硬关断的状态下, 载流子会沿垂直构建的P井中复合, 基本上没有侧向电流, 大大减少触发BJT的机会。

4. 如何更容易实现ZVS

通过以上的分析,可以看到增加MOSFET的死区时间,可以提供足够的二极管反向恢复时间同时降低高dv/dt, di/dt 对LLC电路造成的风险。但是增加死区时间是唯一的选择么?下面我们进一步分析如何够降低风险提升系统效率。

图7

对于LLC 电路来说死区时间的初始电流为

而LLC能够实现ZVS必须满足

而最小励磁电感为

根据以上3个等式,我们可以通过以下三种方式让LLC实现ZVS.

第一, 增加Ipk.

第二, 增加死区时间。

第三, 减小等效电容Ceq即Coss.

从以上几种状况,我们不难分析出。增加Ipk会增加电感尺寸以及成本,增加死区时间会降低正常工作时的电压,而最好的选择无疑是减小Coss,因为减小无须对电路做任何调整,只需要换上一个Coss相对较小MOSFET即可。

5. 结论

LLC 拓扑广泛的应用于各种开关电源当中,而这种拓扑在提升效率的同时也对MOSFET提出了新的要求。不同于硬开关拓扑,软开关LLC谐振拓扑,不仅仅对MOSFET的导通电阻(导通损耗),Qg(开关损耗)有要求,同时对于如何能够有效的实现软开关,如何降低失效率,提升系统可靠性,降低系统的成本有更高的要求。CoolMOS,具有快速的体二极管,低Coss,有的可高达650V的击穿电压,使LLC拓扑开关电源具有更高的效率和可靠性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谐振电路
    +关注

    关注

    11

    文章

    155

    浏览量

    26726
  • LLC
    LLC
    +关注

    关注

    34

    文章

    502

    浏览量

    75912
  • 谐振转换器
    +关注

    关注

    5

    文章

    40

    浏览量

    11343

原文标题:提升开关电源效率和可靠性:半桥谐振LLC+CoolMOS开关管!

文章出处:【微信号:dianyuankaifa,微信公众号:电源研发精英圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    分步解析,半桥LLC谐振转换器的设计要点

    在众多谐振转换器中,LLC 谐振转换器有着高功率密度应用中最常用的拓扑结构。之前我们介绍过采用 NCP4390 的半桥
    的头像 发表于 07-25 02:04 1391次阅读
    分步<b class='flag-5'>解析</b>,半桥<b class='flag-5'>LLC</b><b class='flag-5'>谐振</b><b class='flag-5'>转换器</b>的设计要点

    开关LLC谐振电路特点LLC谐振转换器工作原理

    设计工程师的追捧。但是… 这种拓扑却对功率器件提出了新的要求。  2. LLC 电路特点  LLC 拓扑的以下特点使其广泛的应用于各种
    发表于 10-22 15:23

    半桥LLC谐振电路知识详解(工作原理+设计仿真+解决方案)

    阻,寄生电容和反向恢复时间越来越小了,这为谐振变换的发展提供了又一次机遇。对于谐振变换来说,如果设计得当,能实现
    发表于 12-12 15:05

    开关LLC谐振电路特点LLC谐振转换器工作原理解析

    【众筹活动】每天学习1小时 张飞带你两个月精通半桥LLC开关电源!(最后7天)
    发表于 12-19 14:22

    如何学透半桥串联谐振开关LLC开关电源设计

    ://t.elecfans.com/topic/65.html?elecfans_trackid=t***cyLLC课程由14+资深硬件工程师张飞及其团队亲自讲授,全方位讲解半桥LLC谐振电源电路
    发表于 12-19 15:04

    如何设计广大设计工程师的追捧LLC谐振电路

    工作原理解析开始,一步步教你如何设计LLC谐振电路。您将学习到的知识点:LLC 电路
    发表于 01-11 14:05

    LLC谐振电路设计实例技巧专辑

    发表了许多相关技术说明和设计工具,让其设计变得更容易,并使得这种技术获得更多的关注。现在,llc谐振转换器已经成为 led tv最流行的主功率级拓扑。本资料介绍了大量设计实例,帮助大家学习LL
    发表于 01-17 16:25

    如何提高LLC谐振转换器的效率

    LLC转换器凭借简单、高效的优点而成为广泛用于PC、服务和电视电源的拓扑结构。其谐振操作可实现全负载范围的
    发表于 08-08 09:00

    资料分享:LLC 谐振变换的研究

    进行了对比,对其基本分类和工作过程进行了归纳,总结出 LLC 谐振变换的主要优点;2.分析了 LLC
    发表于 09-28 20:36

    电子书: 这么完整的LLC干货, 不分享出来可惜了!

    的分析与解决方法高级工程师对LLC谐振变换的一些理解开关
    发表于 07-02 16:37

    LLC谐振变换:提升开关电源效率的重要开关拓扑

    。6.]3. LLC 电路的基本结构以及工作原理图1和图2分别给出了LLC谐振变换的典型线路和
    发表于 07-14 07:00

    LLC谐振变换电路工作原理是什么

    五、学习LLC谐振变换电路工作原理在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压
    发表于 01-25 06:21

    如何使用UCC24624提高LLC谐振转换器的效率

    LLC转换器凭借简单、高效的优点而成为广泛用于PC、服务和电视电源的拓扑结构。其谐振操作可实现全负载范围的
    发表于 11-10 06:45

    LLC谐振转换器原理及设计方案

    LLC谐振转换器原理及设计方案 多种类型的LED TV主功率级拓扑相继推出,比如非对称半桥转换器、双开关正激
    发表于 04-26 18:07 2.1w次阅读
    <b class='flag-5'>LLC</b><b class='flag-5'>谐振</b><b class='flag-5'>转换器</b>原理及设计方案

    分步解析,半桥 LLC 谐振转换器的设计要点

    谐振转换器工作原理的说明、变压器和谐振网络的设计,以及元件的选择。 今天我们将介绍设计程序的前9个步骤并配有设计示例来加以说明,帮助您完成 LLC
    的头像 发表于 06-09 19:15 608次阅读
    分步<b class='flag-5'>解析</b>,半桥 <b class='flag-5'>LLC</b> <b class='flag-5'>谐振</b><b class='flag-5'>转换器</b>的设计要点